【題目】小敏的爸爸是一家水果店的經(jīng)理.一天,他去水果批發(fā)市場,用100元購進甲種水果,用100元購進乙種水果,已知乙種水果比甲種水果多10千克,乙種水果的批發(fā)價比甲種水果的批發(fā)價低0.5元.
(1)求甲、乙兩種水果各購進了多少千克?
(2)如果當天甲、乙兩種水果都按2.80元出售,乙種水果很快售完,而甲種水果先售出,剩余的按售價打5折售完.請你通過計算,說明這一天的水果買賣是否賺錢?如果賺錢,賺了多少元?如果不賺錢,那么賠了多少元?
【答案】(1)甲、乙兩種水果各購進了40千克和50千克;(2)這一天的水果買賣賺錢,賺了29.6元
【解析】
(1)先設出甲種水果的批發(fā)價為x元,購進了y千克,則乙種水果的批發(fā)價為(x﹣0.5)元,購進了(y+10)千克.根據(jù)100=水果批發(fā)價×購進數(shù)量,列方程組求解;
(2)根據(jù)利潤=總銷售額﹣購買水果的本錢求解.
解:(1)設甲種水果的批發(fā)價為x元,購進了y千克,則乙種水果的批發(fā)價為(x﹣0.5)元,購進了(y+10)千克.
則有 ,
解得:x=2.5,x﹣0.5=2;y=40,y+10=50.
故甲、乙兩種水果各購進了40千克和50千克.
(2)這一天的利潤=50×(2.8﹣2)+40××(2.8﹣2.5)+40××(1.4﹣2.5)=40+7.2﹣17.6=29.6>0,
這一天的水果買賣賺錢,賺了29.6元.
科目:初中數(shù)學 來源: 題型:
【題目】已知x1,x2是關于x的方程x2+(3k+1)x+2k2+1=0的兩個不相等實數(shù)根,且滿足(x1﹣1)(x2﹣1)=8k2,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖1.已知∠ACB=∠ADB=90°,請用尺規(guī)作圖作出△ABD的外接圓(保留作圖痕跡,不寫作法);點C是否在△ABD的外接圓上 (填“是”或“否”).
問題探究
(2)如圖2.四邊形ADBC是⊙O的內接四邊形,∠ACB=∠ADB=90°,AD=BD.求證:CA+CB=CD;
(3)如圖3.點P是正方形ABCD對角線AC的中點,點E是平面上一點,EB=AB且EA=BA.點Q是線段AE的中點,請在圖中畫出點E,并求線段PQ與AB之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A′在Rt△ABC的邊AB上,∠ABC=30°,AC=2,∠ACB=90°,△ACB繞頂點C按逆時針方向旋轉與△A′CB′重合,A'B'與BC交于點D,連接BB′,求線段BB′的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC紙板中,AC=4,BC=2,AB=5,P是AC上一點,過點P沿直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那么AP長的取值范圍是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的中線,點E在AB邊上,且=,CE交AD于點F,點G是BE中點,若△ABC的面積為112,則△AEF的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了豐富學生課余生活,決定開設以下體育課外活動項目:A籃球;B乒乓球;C羽毛球;D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有__________人;
(2)請你將條形統(tǒng)計圖(1)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).
(探究)如圖②,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC.
(1)求證:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的長.
(應用)如圖③,在△ABC中,AC=BC=4,AB=6,點P在邊AB上(點P不與點A、B重合),連結CP,作∠CPE=∠A,PE與邊BC交于點E.當CE=3EB時,求AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com