【題目】為了緩解市區(qū)日益擁堵的交通狀況,長(zhǎng)沙市地鐵建設(shè)工程指揮部對(duì)長(zhǎng)沙地鐵4號(hào)線茶子山站工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的指標(biāo)書,從指標(biāo)書中得知:甲工程隊(duì)單獨(dú)完成這項(xiàng)工程所需的時(shí)間是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需的時(shí)間的3倍,若由甲隊(duì)先做2個(gè)月,剩下的工程由甲、乙兩隊(duì)合作4個(gè)月可以完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需幾個(gè)月?
(2)已知甲隊(duì)每月的施工費(fèi)用是76萬元,乙隊(duì)每月的施工費(fèi)用是164萬元,工程預(yù)算的施工費(fèi)用為1000萬元,為縮短工期以減少隊(duì)交通的影響,擬安排甲、乙兩隊(duì)合作完成這項(xiàng)工程,則工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請(qǐng)給出擬的判斷并說明理由.
【答案】(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需6個(gè)月,甲隊(duì)單獨(dú)完成這項(xiàng)工程需18個(gè)月;(2)工程預(yù)算的施工費(fèi)用1000萬元不夠用,需追加預(yù)算80萬元,理由見解析
【解析】
(1)設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需x個(gè)月,甲隊(duì)單獨(dú)完成這項(xiàng)工程需3x個(gè)月,由題意可得等量關(guān)系:甲的工作效率×2+(甲的工作效率+乙的工作效率)×4=1,根據(jù)等量關(guān)系可得方程:+()4=1.解方程可得答案;
(2)設(shè)甲乙兩個(gè)工程隊(duì)合作需要a個(gè)月完成任務(wù),由題意可得等量關(guān)系:(甲的工作效率+乙的工作效率)×工作時(shí)間=總工作量1,根據(jù)等量關(guān)系列方程,算出兩隊(duì)合干需要的時(shí)間,再根據(jù)時(shí)間計(jì)算出費(fèi)用即可看出1000萬元是否夠用.
解:(1)設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需個(gè)月,甲隊(duì)單獨(dú)完成這項(xiàng)工程需月,由題意得:
,解得,
經(jīng)檢驗(yàn):是原方程的解,
則甲隊(duì)單獨(dú)完成這項(xiàng)工程需要個(gè)月,
答:乙隊(duì)單獨(dú)完成這項(xiàng)工程需6個(gè)月,甲隊(duì)單獨(dú)完成這項(xiàng)工程需18個(gè)月.
(2)設(shè)甲、乙兩個(gè)工程隊(duì)合作需要個(gè)月完成任務(wù),由題意得:,
解得:,施工費(fèi)用為:(萬元),
∵,∴不夠用,
需追加:(萬元),
答:工程預(yù)算的施工費(fèi)用1000萬元不夠用,需追加預(yù)算80萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過⊙O的圓心O,交⊙O于A、C兩點(diǎn),BC=1,AD為⊙O的弦,連結(jié)BD,∠BAD=∠ABD=30°.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)坐標(biāo)為,為軸正半軸上一動(dòng)點(diǎn),則度數(shù)為_________,在點(diǎn)運(yùn)動(dòng)的過程中的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+2(m﹣2)x+3的圖象與x、y軸交于A、B、C三點(diǎn),其中A(3,0),拋物線的頂點(diǎn)為D.
(1)求m的值及頂點(diǎn)D的坐標(biāo);
(2)如圖1,若動(dòng)點(diǎn)P在第一象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱軸1上,當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)Q是二次函數(shù)圖象上對(duì)稱軸右側(cè)一點(diǎn),設(shè)點(diǎn)Q到直線BC的距離為d,到拋物線的對(duì)稱軸的距離為d1,當(dāng)|d﹣d1|=2時(shí),請(qǐng)求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)在直線上,橫坐標(biāo)為.
(1)確定二次函數(shù)的解析式;
(2)如圖1,時(shí),交二次函數(shù)的圖象于點(diǎn)的面積記作為何值時(shí)的值最大,并求出的最大值;
(3)如圖2,過點(diǎn)作軸的平行線交二次函數(shù)的圖象于點(diǎn)點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱是否存在點(diǎn)使四邊形為菱形,若存在直接寫出的值;若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,已知A的橫坐標(biāo)為.
(1)求B點(diǎn)的橫坐標(biāo)和直線的解析式;
(2)二次函數(shù)的圖象有一點(diǎn)D,把點(diǎn)D向左平移m()個(gè)單位,將與該二次函數(shù)圖象上的另一點(diǎn)重合,將向上移動(dòng)5個(gè)單位后,恰好落在直線上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商場(chǎng)經(jīng)銷一種高檔水果,原價(jià)每千克25元,連續(xù)兩次漲價(jià)后每千克水果現(xiàn)在的價(jià)格為36元.
(1)若每次漲價(jià)的百分率相同.求每次漲價(jià)的百分率;
(2)若進(jìn)價(jià)不變,按現(xiàn)價(jià)售出,每千克可獲利15元,但該水果出現(xiàn)滯銷,商場(chǎng)決定降價(jià)m元出售,同時(shí)把降價(jià)的幅度m控制在的范圍,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),每天銷售量 (千克)與降價(jià)的幅度m(元)成正比例,且當(dāng)時(shí),. 求與 m的函數(shù)解析式;
(3)在(2)的條件下,若商場(chǎng)每天銷售該水果盈利元,為確保每天盈利最大,該水果每千克應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的大學(xué)生參與到志愿服務(wù)中,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng),經(jīng)過初選,兩所學(xué)校各有300名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.
a.甲學(xué)校學(xué)生成績(jī)的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,,,).
b.甲學(xué)校學(xué)生成績(jī)?cè)?/span>這一組是:
80 80 81 81.5 82 83 83 84
85 86 86.5 87 88 88.5 89 89
c.乙學(xué)校學(xué)生成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
83.3 | 84 | 78 | 46% |
根據(jù)以上信息,回答下列問題:
(1)甲學(xué)校學(xué)生,乙學(xué)校學(xué)生的綜合素質(zhì)展示成績(jī)同為82分,這兩人在本校學(xué)生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);
(2)根據(jù)上述信息,推斷________學(xué)校綜合素質(zhì)展示的水平更高,理由為:__________________________
(至少?gòu)膬蓚(gè)不同的角度說明推斷的合理性).
(3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到________分的學(xué)生才可以入選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=20,連接BD,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC.
(1)求證:AE=CE;
(2)若sin∠ABD=,當(dāng)點(diǎn)P在線段BC上時(shí),若BP=8,求△PEC的面積;
(3)若∠ABC=45°,當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),請(qǐng)求出△PEC是等腰三角形時(shí)BP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com