【題目】已知一次函數(shù)的圖像經(jīng)過點(diǎn),與軸相交于點(diǎn),與軸相交于點(diǎn),二次函數(shù)的圖像經(jīng)過點(diǎn)和點(diǎn),頂點(diǎn)為,對稱軸與一次函數(shù)的圖像相交于點(diǎn)。
(1)求一次函數(shù)的解析式以及點(diǎn),點(diǎn)的坐標(biāo);
(2)求頂點(diǎn)的坐標(biāo);
(3)在軸上求一點(diǎn),使得和相似。
【答案】(1);(2);(3)
【解析】
(1)將P點(diǎn)坐標(biāo)代入一次函數(shù)解析式求出k,得到一次函數(shù)解析式,再求交點(diǎn)坐標(biāo);
(2)把A、P代入二次函數(shù)求出a,b的值,得到二次函數(shù)解析式,再配成頂點(diǎn)式得到頂點(diǎn)坐標(biāo);
(3)因?yàn)橄嗨迫切螌?yīng)角不明確,所以分兩種情況討論①, ②.
(1)把代入一次函數(shù)得:,所以,當(dāng),.
(2)把和代入二次函數(shù)得
,
解得,
,
∵
所以.
(3)由題得:;設(shè).
因?yàn)?/span>,
設(shè),將代入得,
①若
所以,Q點(diǎn)為PM與y軸的交點(diǎn),所以
②若
因?yàn)?/span>Q點(diǎn)在y軸上,所以BQ始終平行于MN,不存在這種情況,舍去.綜上Q點(diǎn)坐標(biāo)為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中對角線AC與BD相交于點(diǎn)O,CE⊥BD,垂足為點(diǎn)E,CE=5,且EO=2DE,則ED的長為( )
A.B.2C.1D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:如圖,過圓外一點(diǎn)作圓的切線.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過點(diǎn)P的⊙O的切線.
小敏的作法如下:如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C.
(2)以點(diǎn)C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點(diǎn).
(3)作直線PA,PB.
所以直線PA,PB就是所求作的切線.
老師認(rèn)為小敏的作法正確.
請回答:
(1)連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是_________.
(2)如果⊙O的半徑等于3,點(diǎn)P到切點(diǎn)的距離為4,求點(diǎn)A與點(diǎn)B之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=2x2﹣4x﹣6.
(1)求這個二次函數(shù)圖象的頂點(diǎn)坐標(biāo)及對稱軸;
(2)指出該圖象可以看作拋物線y=2x2通過怎樣平移得到?
(3)在給定的坐標(biāo)系內(nèi)畫出該函數(shù)的圖象,并根據(jù)圖象回答:當(dāng)x取多少時,y隨x增大而減小;當(dāng)x取多少時,y<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)A,B的坐標(biāo)分別為A(4,0),B(4,3),動點(diǎn)N,P分別從點(diǎn)B,A同時出發(fā),點(diǎn)N以1單位/秒的速度向終點(diǎn)C運(yùn)動,點(diǎn)P以5/4單位/秒的速度向終點(diǎn)C運(yùn)動,連結(jié)NP,設(shè)運(yùn)動時間為t秒(0<t<4)
(1)直接寫出OA,AB,AC的長度;
(2)求證:△CPN∽△CAB;
(3)在兩點(diǎn)的運(yùn)動過程中,若點(diǎn)M同時以1單位/秒的速度從點(diǎn)O向終點(diǎn)A運(yùn)動,求△MPN的面積S與運(yùn)動的時間t的函數(shù)關(guān)系式(三角形的面積不能為0),并直接寫出當(dāng)S=時,運(yùn)動時間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(diǎn)(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點(diǎn),交y 軸于點(diǎn)C:
(1)求拋物線的頂點(diǎn)坐標(biāo).
(2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請直接給出點(diǎn)坐標(biāo);若不存在請說明理由.
(3)將直線繞點(diǎn)順時針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:三角形ABC內(nèi)接于圓O,∠BAC與∠ABC的角平分線AE,BE相交于點(diǎn)E,延長AE交外接圓O于點(diǎn)D,連接BD,DC,且∠BCA=60°
(1)求∠BED的大;
(2)證明:△BED為等邊三角形;
(3)若∠ADC=30°,圓O的半徑為r,求等邊三角形BED的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com