【題目】閱讀下面材料:

在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:如圖,過圓外一點作圓的切線.

已知:P為⊙O外一點.

求作:經(jīng)過點P的⊙O的切線.

小敏的作法如下:如圖,

(1)連接OP,作線段OP的垂直平分線MNOP于點C.

(2)以點C為圓心,CO的長為半徑作圓,交⊙OAB兩點.

(3)作直線PA,PB.

所以直線PA,PB就是所求作的切線.

老師認(rèn)為小敏的作法正確.

請回答:

(1)連接OA,OB后,可證∠OAP=∠OBP90°,其依據(jù)是_________.

(2)如果⊙O的半徑等于3,點P到切點的距離為4,求點A與點B之間的距離.

【答案】1)直徑所對的圓周角是直角;(2

【解析】

1)直接根據(jù)圓周角定理即可得出∠OAP=OBP=90°,由切線的性質(zhì)即可得出結(jié)論;

2)連接OA,ABOP于點E,根據(jù)切線的性質(zhì),可得∠OAP =90°,AEOP,根據(jù)勾股定理求出OP,再根據(jù)等面積法求出AE,即可求出AB.

1)解:連接OA,OB后,可證∠OAP=OBP=90°,其依據(jù)是:直徑所對的圓周角是直角;

由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是:經(jīng)過半徑外端,且與半徑垂直的直線是圓的切線.

故答案為:直徑所對的圓周角是直角;經(jīng)過半徑外端,且與半徑垂直的直線是圓的切線.

2)連接OA,ABOP于點E,

因為PA是⊙O的切線,

所以OAP =90°,

在直角三角形OAP中,由勾股定理可得:OP=5,

因為AEOP,

所以 ,

所以AE=,

所以AB=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yx2+bx+c的圖象交x軸于A、D兩點并經(jīng)過B點,已知A點坐標(biāo)是(2,0),B點的坐標(biāo)是(8,6).

1)求二次函數(shù)的解析式;

2)該二次函數(shù)的對稱軸交x軸于C點,連接BC,并延長BC交拋物線于E點,連接BD,DE,求BDE的面積;

3)拋物線上有一個動點P,與A,D兩點構(gòu)成ADP,是否存在2SADPSBCD?若存在請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.ABC的三個頂點A,B,C都在格點上,將△ABC繞點A逆時針方向旋轉(zhuǎn)90°得到△AB′C′

(1)在正方形網(wǎng)格中,畫出△AB′C′

(2)分別畫出旋轉(zhuǎn)過程中,點BC經(jīng)過的路徑;

(3)計算線段BC在變換到B′C′的過程中掃過區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,BC3AC5,點D為線段AC上一動點,將線段BD繞點D逆時針旋轉(zhuǎn)90°,點B的對應(yīng)點為E,連接AE,則AE長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】奇思參加我市電視臺組織的牡丹杯智力競答節(jié)目,答對最后兩道單選題就順利通關(guān),第一道單選題有3個選項,第二道單選題有4個選項,這兩道題奇思都不會,不過奇思還有兩個求助可以使用(使用求助一次可以讓主持人去掉其中一題的一個錯誤選項).

1)如果奇思兩次求助都在第一道單選題中使用,求他通關(guān)的概率;

2)如果奇思每道單選題各使用一次求助",請用列表法或畫樹狀圖的方法求他順利通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),給定不在同一直線上的點AB,C,如圖所示.O到點A,B,C的距離均等于a(a為常數(shù)),到點O的距離等于a的所有點組成圖形G,∠ABC的平分線交圖形G于點D,連接ADCD.

(1)求證:AD=CD.

(2)過點DDEBA,垂足為E,作DFBC,垂足為F,延長DF交圖形G于點M,連接CM.AD=CM,判斷直線DE與圖形G的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點CD在圓上,,過點CCEAD延長線于點E

1)求證:CE是⊙O的切線;

2)若BC3AC4,求CEAD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖像經(jīng)過點,與軸相交于點,與軸相交于點,二次函數(shù)的圖像經(jīng)過點和點,頂點為,對稱軸與一次函數(shù)的圖像相交于點

1)求一次函數(shù)的解析式以及點,點的坐標(biāo);

2)求頂點的坐標(biāo);

3)在軸上求一點,使得相似。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC18,BC12,正方形DEFG的頂點E,FABC內(nèi),頂點D,G分別在ABAC上,ADAG,DG6,則點FBC的距離為( )

A.1B.2C.126D.66

查看答案和解析>>

同步練習(xí)冊答案