【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為直徑,過(guò)點(diǎn)B的切線與AC的延長(zhǎng)線交于點(diǎn)D,E是BD中點(diǎn),連接CE.
(1)求證:CE是⊙O的切線;
(2)若AC=4,BC=2,求BD和CE的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2).
【解析】
試題分析:(1)連接OC,根據(jù)弦切角定理和切線的性質(zhì)可得∠CBE=∠A,∠ABD=90°,根據(jù)圓周角定理可得∠ACB=90°,即可得∠ACO+∠BCO=90°,∠BCD=90°,再由直角三角形斜邊上的中線性質(zhì)得出CE=BD=BE,根據(jù)等腰三角形的性質(zhì)可得∠BCE=∠CBE=∠A,即可證出∠ACO=∠BCE,所以∠BCE+∠BCO=90°,即CE⊥OC,所以CE是⊙O的切線;(2)由勾股定理求出AB的長(zhǎng),再由三角函數(shù)得出tanA==,求出BD=AB=,即可得出CE的長(zhǎng).
試題解析:(1)證明:連接OC,如圖所示:
∵BD是⊙O的切線,
∴∠CBE=∠A,∠ABD=90°,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=90°,∠BCD=90°,
∵E是BD中點(diǎn),
∴CE=BD=BE,
∴∠BCE=∠CBE=∠A,
∵OA=OC,
∴∠ACO=∠A,
∴∠ACO=∠BCE,
∴∠BCE+∠BCO=90°,
即∠OCE=90°,CE⊥OC,
∴CE是⊙O的切線;
(2)解:∵∠ACB=90°,
∴AB=,
∵tanA==,
∴BD=AB=,
∴CE=BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過(guò)點(diǎn)A(1,4),且該直線與x軸的交點(diǎn)為B.
(1)求反比例函數(shù)和直線的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果將點(diǎn)B先向右移動(dòng)4個(gè)單位長(zhǎng)度,再向左移動(dòng)6個(gè)單位長(zhǎng)度后,這時(shí)點(diǎn)B表示的數(shù)是-6,則點(diǎn)B最初在數(shù)軸上表示的數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問(wèn)題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來(lái)得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問(wèn)題時(shí),有如下思路:連接AC.
結(jié)合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說(shuō)明理由,參考小敏思考問(wèn)題的方法解決一下問(wèn)題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫(xiě)出結(jié)論并證明;
②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫(xiě)出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)最小方格的邊長(zhǎng)均為1個(gè)單位,P1,P2,P3,…均在格點(diǎn)上,其順序按圖中“→”方向排列,如:點(diǎn)P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),….根據(jù)這個(gè)規(guī)律,求點(diǎn)P2018的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com