【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時,有如下思路:連接AC.
結(jié)合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結(jié)論并證明;
②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結(jié)論.
【答案】(1)是平行四邊形;(2)①AC=BD;②AC⊥BD.
【解析】
試題分析:(1)如圖2,連接AC,根據(jù)三角形中位線的性質(zhì)及平行四邊形判定定理即可得到結(jié)論;
(2)①由(1)知,四邊形EFGH是平行四邊形,且FG=BD,HG=AC,于是得到當AC=BD時,F(xiàn)G=HG,即可得到結(jié)論;
②若四邊形EFGH是矩形,則∠HGF=90°,即GH⊥GF,又GH∥AC,GF∥BD,則AC⊥BD.
試題解析:(1)是平行四邊形.證明如下:
如圖2,連接AC,∵E是AB的中點,F(xiàn)是BC的中點,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,綜上可得:EF∥HG,EF=HG,故四邊形EFGH是平行四邊形;
(2)①AC=BD.
理由如下:
由(1)知,四邊形EFGH是平行四邊形,且FG=BD,HG=AC,∴當AC=BD時,F(xiàn)G=HG,∴平行四邊形EFGH是菱形;
②當AC⊥BD時,四邊形EFGH為矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如果=0,求[(x2+y2)+2y(x-y)-(x-y)(x+3y)]÷4y的值.
(2)先化簡,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
(1)平行四邊形的對角線互相平分;(2)矩形的對角線相等;(3)菱形的對角線互相垂直平分;(4)正方形的對角線相等且互相垂直平分.其中,真命題的個數(shù)是( )
A. 2B. 3C. 4D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為直徑,過點B的切線與AC的延長線交于點D,E是BD中點,連接CE.
(1)求證:CE是⊙O的切線;
(2)若AC=4,BC=2,求BD和CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 (x+3)(x-2)=x2+ax+b , 則a、b的值分別是( )
A.a=-1,b=-6
B.a=1,b=-6
C.a=-1,b=6
D.a=1,b=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點C順時針旋轉(zhuǎn)90°得到矩形FGCE,點M、N分別是BD、GE的中點,若BC=14,CE=2,則MN的長( 。
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市教育行政部門為了了解七年級學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校七學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了如圖兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中的a的值,并求出該校七年級學(xué)生總數(shù);
(2)分別求出活動時問為5天、7天的學(xué)生人數(shù),并補全頻數(shù)分布直方圖;
(3)求出扇形統(tǒng)計圖中“活動時間為4天”的扇形所對圓心角的度數(shù);
(4)如果該市共有七年級學(xué)生6000人,請你估計“活動時間不小于4天”的大約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com