10.按照要求畫圖:
(1)如圖甲,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,3),(-4,1),(-2,1),將△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)為點(diǎn)A1,B1,C1.畫出旋轉(zhuǎn)后的△A1B1C1;
(2)如圖乙,下列3×3網(wǎng)格都是由9個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?個(gè)空白小正方形中,選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形(畫出兩種即可).

分析 (1)直接利用旋轉(zhuǎn)的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;
(2)利用中心對(duì)稱圖形的性質(zhì)得出符合題意的答案.

解答 解:(1)如圖甲所示:旋轉(zhuǎn)后的△A1B1C1即為所求;

(2)如圖乙所示:答案不唯一.

點(diǎn)評(píng) 此題主要考查了利用旋轉(zhuǎn)設(shè)計(jì)圖案,正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.按如圖所示的計(jì)算程序計(jì)算,若開始輸入的數(shù)為x=2,則最后輸出的數(shù)為231

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.?dāng)S一枚質(zhì)地不均勻的骰子,做了大量的重復(fù)試驗(yàn),發(fā)現(xiàn)“朝上一面為6點(diǎn)”出現(xiàn)的頻率越來(lái)越穩(wěn)定于0.4.那么,擲一次該骰子,“朝上一面為6點(diǎn)”的概率為0.4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若一個(gè)角比它的補(bǔ)角大36°48′,則這個(gè)角為108°24′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面直角坐標(biāo)系中,將拋物線y=x2-2x-1先向上平移3個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度,所得的拋物線的解析式是(  )
A.y=(x+1)2+1B.y=(x-3)2+1C.y=(x-3)2-5D.y=(x+1)2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,有如下定義:若直線l和圖形W相交于兩點(diǎn),且這兩點(diǎn)的距離不小于定值k,則稱直線l與圖形W成“k相關(guān)”,此時(shí)稱直線與圖形W的相關(guān)系數(shù)為k.
(1)若圖形W是由A(-2,-1),B(-2,1),C(2,1),D(2,-1)順次連線而成的矩形:
①l1:y=x+2,l2:y=x+1,l3:y=-x-3這三條直線中,與圖形W成“$\sqrt{2}$相關(guān)”的直線有l(wèi)1和l2;
②畫出一條經(jīng)過(guò)(0,1)的直線,使得這條直線與W成“$\sqrt{5}$相關(guān)”;
③若存在直線與圖形W成“2相關(guān)”,且該直線與直線y=$\sqrt{3}$x平行,與y 軸交于點(diǎn)Q,求點(diǎn)Q縱坐標(biāo)yQ的取值范圍;
(2)若圖形W為一個(gè)半徑為2的圓,其圓心K位于x軸上.若直線y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$與圖形 W成“3相關(guān)”,請(qǐng)直接寫出圓心K的橫坐標(biāo)xK的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,這是一個(gè)運(yùn)算的流程圖,輸入正整數(shù)x的值,按流程圖進(jìn)行操作并輸出y的值.例如,若輸入x=10,則輸出y=5.若輸出y=3,則輸入的x的值為5或6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,正方形OABC的邊長(zhǎng)為2,以O(shè)為圓心,EF為直徑的半圓經(jīng)過(guò)點(diǎn)A,連接AE,CF相交于點(diǎn)P,將正方形OABC從OA與OF重合的位置開始,繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,交點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)是( 。
A.B.$\sqrt{2}$πC.3$\sqrt{2}$D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和線段AB,給出如下定義:如果線段AB上存在兩個(gè)點(diǎn)M,N,使得∠MPN=30°,那么稱點(diǎn)P為線段AB的伴隨點(diǎn).

(1)已知點(diǎn)A(-1,0),B(1,0)及D(1,-1),E($\frac{5}{2}$,-$\sqrt{3}}$),F(xiàn)(0,2+$\sqrt{3}$),
①在點(diǎn)D,E,F(xiàn)中,線段AB的伴隨點(diǎn)是D、F;
②作直線AF,若直線AF上的點(diǎn)P(m,n)是線段AB的伴隨點(diǎn),求m的取值范圍;
(2)平面內(nèi)有一個(gè)腰長(zhǎng)為1的等腰直角三角形,若該三角形邊上的任意一點(diǎn)都是某條線段a的伴隨點(diǎn),請(qǐng)直接寫出這條線段a的長(zhǎng)度的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案