【題目】如圖,的邊位于直線上,,,,若由現(xiàn)在的位置向右無滑動地旋轉(zhuǎn),當(dāng)第次落在直線上時,點(diǎn)所經(jīng)過的路線的長為________(結(jié)果用含有的式子表示)
【答案】
【解析】
根據(jù)含30度的直角三角形三邊的關(guān)系得到BC=1,AB=2BC=2,∠ABC=60°;點(diǎn)A先以B點(diǎn)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)120°到A1,再以點(diǎn)C1為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°到A2,然后根據(jù)弧長公式計算兩段弧長,從而得到點(diǎn)A第3次落在直線上時,點(diǎn)A所經(jīng)過的路線的長.
∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,
∴BC=1,AB=2BC=2,∠ABC=60°;
∵Rt△ABC由現(xiàn)在的位置向右無滑動的翻轉(zhuǎn),且點(diǎn)A第3次落在直線l上時,有3個的長,2個的長,
∴點(diǎn)A經(jīng)過的路線長=×3+×2=(4+)π.
故答案為:(4+)π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,AD是BC邊上的中線,且AD=4,延長AD到點(diǎn)E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(,0)、B(0,1),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……則三角形(2020)的直角頂點(diǎn)的橫坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動;同時點(diǎn)Q從C點(diǎn)出發(fā),沿著CA以每秒3cm的速度向A點(diǎn)運(yùn)動,設(shè)運(yùn)動時間為x秒.
(1)x為何值時,PQ∥BC;
(2)是否存在某一時刻,使△APQ∽△CQB?若存在,求出此時AP的長;若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的斜邊在軸上,點(diǎn)的坐標(biāo)為,,,把先繞點(diǎn)順時針旋轉(zhuǎn),然后向下平移個單位,則點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊邊長為,為邊上一點(diǎn),,且、分別于邊、交于點(diǎn)、.
如圖,當(dāng)點(diǎn)為的三等分點(diǎn),且時,判斷的形狀;
如圖,若點(diǎn)在邊上運(yùn)動,且保持,設(shè),四邊形面積的,求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
如圖,若點(diǎn)在邊上運(yùn)動,且繞點(diǎn)旋轉(zhuǎn),當(dāng)時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別寫有數(shù)字、、、的乒乓球(形狀、大小一樣),先從盒子里隨機(jī)摸出一個乒乓球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)摸出一個乒乓球,記下數(shù)字.
請用樹形圖或列表法求兩次摸出乒乓球上的數(shù)字相同的概率;
若再向盒子里放入個寫有數(shù)字的乒乓球,使得從盒子里隨機(jī)摸出一個乒乓球,摸到寫有數(shù)字的乒乓球的概率為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.若將△PAC繞點(diǎn)A逆時針旋轉(zhuǎn)后,得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com