【題目】如圖,ABC中,AB=AC,BAC=540,以AB為直徑的O分別交AC,BC于點D,E,過點B作O的切線,交AC的延長線于點F。

(1)求證:BE=CE;

(2)求CBF的度數(shù);

(3)若AB=6,求的長。

【答案】解:(1)如圖,連接AE,

ABO直徑,

AEB=900,即AEBC。

AB=AC,BE=CE。

(2)∵∠BAC=540,AB=AC,∴∠ABC=630

BF是O的切線,∴∠ABF=900。

∴∠CBF=ABF一ABC=270

(3)連接OD,

OA=OD,BAC=540∴∠AOD=720。

AB=6,OA=2。

。

解析(1)連接AE,則根據(jù)直徑所對圓周角是直角的性質(zhì)得AEBC,從而根據(jù)等腰三角形三線合一的性質(zhì)得出結(jié)論

(2)由BAC=540,AB=AC,根據(jù)等腰三角形等邊對等角的性質(zhì)和三角形內(nèi)角和等于零180度求得ABC=630;由切線垂直于過切點直徑的性質(zhì)得ABF=900,從而由CBF=ABF一ABC得出結(jié)論。

(3)連接OD,根據(jù)同弧所對圓周角是圓心角一半的性質(zhì),求得AOD=720,根據(jù)弧長公式即可求。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)約資源,科學(xué)指導(dǎo)居民改善居住條件,小王向房管部門提出了一個購買商品房的政策性方案.

人均住房面積(平方米)

單價(萬元/平方米)

不超過30(平方米)

0.3

超過30平方米不超過m(平方米)部分(45≤m≤60)

0.5

超過m平方米部分

0.7

根據(jù)這個購房方案:

(1)若某三口之家欲購買120平方米的商品房,求其應(yīng)繳納的房款;

(2)設(shè)該家庭購買商品房的人均面積為x平方米,繳納房款y萬元,請求出y關(guān)于x的函數(shù)關(guān)系式;

(3)若該家庭購買商品房的人均面積為50平方米,繳納房款為y萬元,且57<y≤60 時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點IO分別是ABC的內(nèi)心和外心,則∠AIB和∠AOB的關(guān)系為( 。

A. AIB=∠AOBB. AIBAOB

C. 2AIBAOB180°D. 2AOBAIB180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線.

(1)求證:該拋物線與x軸總有交點;

(2)若該拋物線與x軸有一個交點的橫坐標(biāo)大于3且小于5,求m的取值范圍;

(3)設(shè)拋物線軸交于點M,若拋物線與x軸的一個交點關(guān)于直線的對稱點恰好是點M,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學(xué)課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4cm,∠A60°,弧BD是以點A為圓心,AB長為半徑的弧,弧CD是以點B為圓心,BC長為半徑的弧,則陰影部分的面積為( 。

A. 2cm2B. 4cm2C. 4cm2D. πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1的方格紙中有線段ABCD,點A,BC,D均在小正方形頂點上.

1)在方格紙中畫出面積為5的等腰直角△ABE,且點E在小正方形的頂點上;

2)在方格紙中畫出面積為3的等腰△CDF,其中CD為一腰,且點F在小正方形的頂點上;

3)在(1)(2)條件下,連接EF,請直接寫出線段EF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+ca0)經(jīng)過點(﹣1,0),且滿足4a+2b+c0,有下列結(jié)論:①a+b0;a+b+c0;③b22ac5a2.其中,正確結(jié)論的個數(shù)是( 。

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(3y1),B(2y2)均在拋物線yax2+bx+c上,點P(mn)是該拋物線的頂點,若y1y2n,則m的取值范圍是(  )

A.3m2B.m-C.m>﹣D.m2

查看答案和解析>>

同步練習(xí)冊答案