【題目】蘭州市外國語學(xué)校開展數(shù)學(xué)史知識競賽活動,八年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示:

1)請計算八(1)班、八(2)班選出的5名選手復(fù)賽的平均成績?眾數(shù)和中位數(shù)?

2)請用方差判斷哪個班選出的5名選手的復(fù)賽成績比較穩(wěn)定?

【答案】1)八年級一班的平均成績?yōu)?/span>85,眾數(shù)為85分,中位數(shù)為85分;八年級二班平均成績?yōu)?/span>85,眾數(shù)為100分,中位數(shù)為80分;(2)八(1)班的成績比較穩(wěn)定,見解析

【解析】

1)利用平均數(shù)的計算公式可求出平均成績,根據(jù)眾數(shù)和中位數(shù)的定義即可得;

2)利用方差公式求出兩班5名選手的復(fù)賽成績的方差,根據(jù)方差越小,表示成績越穩(wěn)定即可得.

1)由圖中數(shù)據(jù)可得:(分)

(分)

根據(jù)眾數(shù)和中位數(shù)的定義得:八(1)班的眾數(shù)為85分,中位數(shù)為85

八(2)班的眾數(shù)為100分,中位數(shù)為80分;

2)八(1)班的成績比較穩(wěn)定,理由如下:

因為

所以八(1)班的成績比較穩(wěn)定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,點在線段上運(yùn)動(不與、重合),連接,作,交線段于點.

1)若,證明:;

2)在點的運(yùn)動過程中,的形狀可以是等腰三角形嗎?若可以,請直接寫出的度數(shù);若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊在我市實施棚戶區(qū)改造過程中承包了一項拆遷工程.原計劃每天拆遷,因為準(zhǔn)備工作不足,第一天少拆遷了.從第二天開始,該工程隊加快了拆遷速度,第三天拆遷了.求:

該工程隊第一天拆遷的面積;

若該工程隊第二天、第三天每天的拆遷面積比前一天增加的百分?jǐn)?shù)相同,求這個百分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用我們學(xué)過的知識,可以得出下面這個優(yōu)美的等式:

;該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.

.請你證明這個等式;

.如果,請你求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖在RtABC中,斜邊AB=5厘米,BC=厘米,AC=b厘米,>b,且、b是方程的兩根。

b的值;

開始時完全重合,然后讓固定不動,將1厘米/秒的速度沿所在的直線向左移動。

設(shè)x秒后的重疊部分的面積為y平方厘米,

yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

幾秒后重疊部分的面積等于平方厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于、兩點,與軸相交于點,點是直線下方拋物線上一點,過點軸的平行線,與直線相交于點

求直線的解析式;

當(dāng)線段的長度最大時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2 -(m+1)x+2(m-1)=0,

1)求證:無論m取何值時,方程總有實數(shù)根;

2)若等腰三角形腰長為4,另兩邊恰好是此方程的根,求此三角形的另外兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為美化校園,準(zhǔn)備在長35米,寬20米的長方形場地上,修建若干條寬度相同的道路,余下部分作草坪,并請全校學(xué)生參與方案設(shè)計,現(xiàn)有3位同學(xué)各設(shè)計了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請你根據(jù)這一問題,在每種方案中都只列出方程不解.

①甲方案設(shè)計圖紙為圖l,設(shè)計草坪的總面積為600平方米.

②乙方案設(shè)計圖紙為圖2,設(shè)計草坪的總面積為600平方米.

③丙方案設(shè)計圖紙為圖3,設(shè)計草坪的總面積為540平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,RtABC中,∠ACB90°,點D為邊AC上一點,DEAB于點E,點HBD中點,CH的延長線交AB于點F

1)求證:CHEH;

2)若∠CAB40°,求∠EHF;

3)如圖②,若△DAE≌△CEH,點QCH的中點,連接AQ,求證:AQEH

查看答案和解析>>

同步練習(xí)冊答案