【題目】如圖,AB是⊙O的直徑,弦AC與BD交于點(diǎn)E,且AC=BD,連接AD,BC.
(1)求證:△ADB≌△BCA;
(2)若OD⊥AC,AB=4,求弦AC的長(zhǎng);
(3)在(2)的條件下,延長(zhǎng)AB至點(diǎn)P,使BP=2,連接PC.求證:PC是⊙O的切線.
【答案】(1)詳見(jiàn)解析;(2);(3)詳見(jiàn)解析.
【解析】
(1)可證∠ACB=∠ADB=90°,則由HL定理可證明結(jié)論;
(2)可證AD=BC=DC,則∠AOD=∠ABC=60°,由直角三角形的性質(zhì)可求出AC的長(zhǎng);
(3)可得出BC=BP=2,∠BCP=30°,連接OC,可證出∠OCP=90°,則結(jié)論得證.
(1)證明:∵AB是⊙O的直徑,
∴∠ACB=∠ADB=90°,
∵AB=AB,
∴△ADB≌△BCA(HL);
(2)解:如圖,連接DC,
∵OD⊥AC,
∴,
∴AD=DC,
∵△ADB≌△BCA,
∴AD=BC,
∴AD=DC=BC,
∴∠AOD=∠ABC=60°,
∵AB=4,
∴;
(3)證明:如圖,連接OC,
由(1)和(2)可知BC=
∵BP=2
∴BC=BP=2
∴∠BCP=∠P,
∵∠ABC=60°,
∴∠BCP=30°,
∵OC=OB,∠ABC=60°,
∴△OBC是等邊三角形,
∴∠OCB=60°,
∴∠OCP=∠OCB+∠BCP=60°+30°=90°,
∴OC⊥PC,
∴PC是⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著地鐵和共享單車(chē)的發(fā)展,“地鐵+單車(chē)”已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車(chē)回家.設(shè)他出地鐵的站點(diǎn)與文化宮站的距離為(單位:km),乘坐地鐵的時(shí)間(單位:min)是關(guān)于的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x/km | 7 | 9 | 11 | 12 | 13 |
y1/min | 16 | 20 | 24 | 26 | 28 |
(1)求關(guān)于的函數(shù)解析式;
(2)李華騎單車(chē)的時(shí)間(單位:min)也受的影響,其關(guān)系可以用=2-11+78來(lái)描述.求李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮站回到家所需的時(shí)間最短,并求出最時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,BC=2,CD是△ABC的一條高線.若E,F(xiàn)分別是CD和BC上的動(dòng)點(diǎn),則BE+EF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為1,AB、AD上各有一點(diǎn)P、Q,如果的周長(zhǎng)為2,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=65°,BC=6,以BC為直徑的半圓O與AB、AC分別交于點(diǎn)D、E,則圖中由O、D、E三點(diǎn)所圍成的扇形面積等于_____.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)店銷(xiāo)售一部A型手機(jī)比銷(xiāo)售一部B型手機(jī)獲得的利潤(rùn)多50元,銷(xiāo)售相同數(shù)量的A型手機(jī)和B型手機(jī)獲得的利潤(rùn)分別為3000元和2000元.
(1)求每部A型手機(jī)和B型手機(jī)的銷(xiāo)售利潤(rùn)分別為多少元?
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的手機(jī)共110部,其中A型手機(jī)的進(jìn)貨量不超過(guò)B型手機(jī)的2倍.設(shè)購(gòu)進(jìn)B型手機(jī)n部,這110部手機(jī)的銷(xiāo)售總利潤(rùn)為y元.
①求y關(guān)于n的函數(shù)關(guān)系式;
②該手機(jī)店購(gòu)進(jìn)A型、B型手機(jī)各多少部,才能使銷(xiāo)售總利潤(rùn)最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)B型手機(jī)出廠價(jià)下調(diào)m(30<m<100)元,且限定商店最多購(gòu)進(jìn)B型手機(jī)80臺(tái).若商店保持兩種手機(jī)的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使這110部手機(jī)銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織數(shù)學(xué)興趣探究活動(dòng),愛(ài)思考的小實(shí)同學(xué)在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí)發(fā)現(xiàn),兩條中線互相垂直的三角形稱(chēng)為“中垂三角形”.如圖1、圖2、圖3中,、是的中線,于點(diǎn),像這樣的三角形均稱(chēng)為“中垂三角形”.
(特例探究)
(1)如圖1,當(dāng),時(shí),_____,______;
如圖2,當(dāng),時(shí),_____,______;
(歸納證明)
(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想、、三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論;
(拓展證明)
(3)如圖4,在中,,,、、分別是邊、的中點(diǎn),連結(jié)并延長(zhǎng)至,使得,連結(jié),當(dāng)于點(diǎn)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,1),B(1,4),C(3,2).請(qǐng)解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的圖形△A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的右側(cè),畫(huà)出△ABC放大后的圖形△A2B2C2,并直接寫(xiě)出C2點(diǎn)的坐標(biāo);
(3)如果點(diǎn)D(a,b)在線段BC上,請(qǐng)直接寫(xiě)出經(jīng)過(guò)(2)的變化后對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D、E分別在邊AB、BC上,AD=BE,CD與AE交于F.
(1)求∠AFD的度數(shù);
(2)若BE=m,CE=n.
①求的值;(用含有m和n的式子表示)
②若=,直接寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com