【題目】如圖,點D在△ABC的邊AB上,點E為AC的中點,過點C作CF∥AB交DE的延長線于點F,連接AF.
(1)求證:CD=AF;
(2)若∠AED=2∠ECD,求證:四邊形ADCF是矩形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)首先證明△AED≌△CFE,即可證得四邊形ADCF的對角線互相平分,依據對角線互相平分的四邊形是平行四邊形即可證得;
(2)利用三角形的外角的性質即可證得∠EDC=∠ECD,則根據等角對等邊即可證得DE=EC,從而證明平行四邊形ADCF的對角線相等,即可證得.
(1)∵CF∥AB,
∴∠EFC=∠ADE,
則在△AED和△CFE中,
,
∴△AED≌△CFE,
∴DE=FE,
又∵AE=CE,
∴四邊形ADCF是平行四邊形,
∴CD=AF;
(2)∵∠AED=2∠ECD,∠AED=∠ECD+∠EDC,
∴∠EDC=∠ECD,
∴DE=EC,
又∵DE=FE,AE=CE,
∴AC=DF,
∴平行四邊形ADCF是矩形.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點作CE⊥BD交BD于E點,H為BC中點,連接AH交BD于G點,交EC的延長線于F點,下列5個結論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE,⑤CF=BD.正確的有( 。﹤.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一只不透明的袋子中裝有4個質地、大小均相同的小球,這些小球分別標有數字2,3,4,x,甲、乙兩人每次同時從袋中各隨機摸出1個球,并計算摸出的這2個小球上數字之和,記錄后都將小球放回袋中攪勻,進行重復試驗,實驗數據如下表:
摸球總次數 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和為6”出現的頻數 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和為6”出現的頻數 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列問題:
(1)如果實驗繼續(xù)進行下去,根據上表數據,出現“和為6”的頻率將穩(wěn)定在它的概率附近,估計出現“和為6”的概率是 .
(2)當x=5時,請用列表法或樹狀圖法計算“和為6”的概率
(3)判斷x=5是否符合(1)的結論,若符合,請說明理由,若不符合,請你寫出一個符合(1)的x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠在生產過程中要消耗大量電能,消耗每千度電產生利潤與電價是一次函數關系,經過測算,工廠每千度電產生利潤(元/千度))與電價(元/千度)的函數圖象如圖:
當電價為元/千度時,工廠消耗每千度電產生利潤是多少?
為了實現節(jié)能減排目標,有關部門規(guī)定,該廠電價(元/千度)與每天用電量(千度)的函數關系為,且該工廠每天用電量不超過千度,為了獲得最大利潤,工廠每天應安排使用多少度電?工廠每天消耗電產生利潤最大是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩人加工同一種玩具,甲加工90個玩具所用的時間與乙加工120個玩具所用的時間相等,已知甲乙兩人每天共加工35個玩具,設甲每天加工x個玩具:
(1)乙每天加工 個玩具(用含x的代數式表示);
(2)求甲乙兩人每天各加工多少個玩具?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在邊長為1的正方形網格中標有A、B、C、D、E、F六個格點,頂點在格點上的三角形叫做格點三角形,如格點三角形△ABC.
(1)△ABC的面積為 ;
(2)△ABC的形狀為 ;
(3)根據圖中標示的各點(A、B、C、D、E、F)位置,與△ABC全等的格點三角形是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com