【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CE⊥AB于點(diǎn)E,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE、CB于點(diǎn)P、Q,連接AC,給出下列結(jié)論:①∠DAC=∠ABC;②AD=CB;③點(diǎn)P是△ACQ的外心;④AC2=AEAB;⑤CB∥GD,其中正確的結(jié)論是(
A.①③⑤
B.②④⑤
C.①②⑤
D.①③④

【答案】D
【解析】解:∵在⊙O中,點(diǎn)C是 的中點(diǎn), ∴ = ,
∴∠CAD=∠ABC,故①正確;

,
∴AD≠BC,故②錯(cuò)誤;
∵AB是⊙O的直徑,
∴∠ACB=90°,
又∵CE⊥AB,
∴∠ACE+∠CAE=∠ABC+∠CAE=90°,
∴∠ACE=∠ABC,
又∵C為 的中點(diǎn),
= ,
∴∠CAP=∠ABC,
∴∠ACE=∠CAP,
∴AP=CP,
∵∠ACQ=90°,
∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點(diǎn),
∴P為Rt△ACQ的外心,故③正確;
∵AB是⊙O的直徑,
∴∠ACB=90°,
又∵CE⊥AB
∴根據(jù)射影定理,可得AC2=AEAB,故④正確;
如圖,連接BD,則∠ADG=∠ABD,
,

∴∠ABD≠∠BAC,
∴∠ADG≠∠BAC,
又∵∠BAC=∠BCE=∠PQC,
∴∠ADG≠∠PQC,
∴CB與GD不平行,故⑤錯(cuò)誤.
所以答案是:D.


【考點(diǎn)精析】關(guān)于本題考查的垂徑定理和圓周角定理,需要了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題

(1)-5.4+0.2-0.6+1.8

(2) (-26.54)+(-6.4)+18.54+6.4

(3)

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB兩個(gè)端點(diǎn)的坐標(biāo)分別為A(6,6),B(8,2),以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮小為原來(lái)的 后得到線段CD,則點(diǎn)B的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為(
A.(3,3)
B.(1,4)
C.(3,1)
D.(4,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和矩形的三邊AE、ED、DB組成,已知河底ED是水平的,ED=16米,AE=8米,拋物線的頂點(diǎn)C到ED的距離是11米,以ED所在的直線為x軸,拋物線的對(duì)稱軸為y軸建立平面直角坐標(biāo)系.
(1)根據(jù)題意,填空: ①頂點(diǎn)C的坐標(biāo)為;
②B點(diǎn)的坐標(biāo)為;
(2)求拋物線的解析式;
(3)已知從某時(shí)刻開(kāi)始的40小時(shí)內(nèi),水面與河底ED的距離h(單位:米)隨時(shí)間t(單位:時(shí))的變化滿足函數(shù)關(guān)系h=﹣ (t﹣19)2+8(0≤t≤40),且當(dāng)點(diǎn)C到水面的距離不大于5米時(shí),需禁止船只通行,請(qǐng)通過(guò)計(jì)算說(shuō)明:在這一時(shí)段內(nèi),需多少小時(shí)禁止船只通行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C,D是以線段AB為直徑的⊙O上兩點(diǎn),若CA=CD,且∠ACD=30°,則∠CAB=(
A.15°
B.20°
C.25°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第個(gè)圖案中有4個(gè)三角形,第個(gè)圖案中有6個(gè)三角形,第個(gè)圖案中有8個(gè)三角形,,按此規(guī)律排列下去,則第個(gè)圖案中三角形的個(gè)數(shù)為( )

A. 12 B. 14 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,階梯圖的每個(gè)臺(tái)階上都標(biāo)著一個(gè)數(shù),從下到上的第1個(gè)至第4個(gè)臺(tái)階上依次標(biāo)著-5,-2,1,9,且任意相鄰四個(gè)臺(tái)階上數(shù)的和都相等.

(1)求前4個(gè)臺(tái)階上數(shù)的和是多少?

(2)求第5個(gè)臺(tái)階上的數(shù)是多少?

(3)從下到上前多少個(gè)臺(tái)階上數(shù)的和為30.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對(duì)稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.
(1)求拋物線的解析式;
(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于DE的一條動(dòng)直線l與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y= 的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y= 的圖象上,且OA⊥OB,cosA= ,則k的值為( )

A.﹣3
B.﹣4
C.﹣
D.﹣2

查看答案和解析>>

同步練習(xí)冊(cè)答案