【題目】如圖,RtABC紙片中,∠C=90°,AC=BC=4,點D在邊BC上,以AD為折痕,將△ABD折疊,得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______

【答案】

【解析】

先依據(jù)勾股定理求得AB的長,然后由翻折的性質(zhì)可知:AB=DB=DB′,設(shè)DB=DB=x,然后依據(jù)勾股定理列出關(guān)于x的方程求解即可.

解:如圖所示:當(dāng)∠BED=90°時,C與點E重合,

RtABC紙片中,∠C=90°,AC=BC=4,

AB=,

∵以AD為折痕△ABD折疊得到△ABD,

BD=DB′,AB=AB=,

BE=,

設(shè)BD=DB=x,則CD=ED=4x

RtBDE中,,即,

解得:x=,

綜上所述,BD的長為;

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為2的等邊三角形,將ABC沿射線BC向右平移到DCE,連接AD,BD,下列結(jié)論錯誤的是(  )

A.AD=BCB.BDDE

C.四邊形ACED是菱形D.四邊形ABCD的面積為4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,轉(zhuǎn)盤被等分成10個扇形,每個扇形上面寫有一個有理數(shù).任意轉(zhuǎn)動轉(zhuǎn)盤,求轉(zhuǎn)得下列各數(shù)的概率.

1)轉(zhuǎn)得正數(shù);

2)轉(zhuǎn)得負(fù)整數(shù);

3)轉(zhuǎn)得絕對值不大于5的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,分別延長BADC到點E,H,使得AEAB,CHCD,連接EH,分別交AD,BC于點FG,求證:EFGH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(0, .

(1)求拋物線的解析式.

(2)拋物線與軸交于另一個交點為C,點D在線段AC上,已知AD=AB,若動點PA出發(fā)沿線段AC以每秒1個單位長度的速度勻速運動,同時另一個動點Q以某一速度從B出發(fā)沿線段BC勻速運動,問是否存在某一時刻,使線段PQ被直線BD垂直平分,若存在,求出點Q的運動速度;若不存在,請說明理由.

(3)在(2)的前提下,過點B的直線軸的負(fù)半軸交于點M,是否存在點M,使以A、B、M為頂點的三角形與相似,如果存在,請直接寫出M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點HA、H、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4/秒,求這架無人飛機的飛行高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點D在邊AB上.

(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;

(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點E在△ABC外部時,EHAB于點H,過點EGEAB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ab是任意兩個不等實數(shù),我們規(guī)定:滿足不等式axb的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足當(dāng)myn,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.

1)反比例函數(shù)y=是閉區(qū)間[12019]上的“閉函數(shù)”嗎?請判斷并說明理由.

2)若一次函數(shù)y=kx+b(k0)是閉間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案