【題目】如圖,邊長為12的等邊三角形ABC中,M是高CH所在直線上的一個動點,連結(jié)MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連結(jié)HN.則在點M運動過程中,線段HN長度的最小值是(

A.6B.3C.2D.15

【答案】B

【解析】

CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MGCH時最短,再根據(jù)∠BCH=30°求解即可.

解:如圖,取BC的中點G,連接MG

∵旋轉(zhuǎn)角為60°,

∴∠MBH+HBN=60°,

又∵∠MBH+MBC=ABC=60°

∴∠HBN=GBM,

CH是等邊ABC的對稱軸,

HB=AB

HB=BG,

又∵MB旋轉(zhuǎn)到BN,

BM=BN,

MBGNBH中,

,

∴△MBG≌△NBHSAS),

MG=NH

根據(jù)垂線段最短,當MGCH時,MG最短,即HN最短,

此時∠BCH=×60°=30°,CG=AB=×12=6

MG=CG=×6=3,

HN=3

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料閱讀:

如圖,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.

解決問題:

(1)圖中,若∠A=∠B=∠DEC=40°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;

(2)如圖,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖中畫出矩形ABCD的邊AB上的強相似點(無需寫解答過程);

(3)如圖所示的矩形ABCD,將矩形ABCD沿CM折疊后,點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究點E的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,CDAB,垂足為D,BF平分∠ABC,交CD于點E,交AC于點F.若AB10BC6,則CE的長為(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某校有一塊菱形空地ABCD,A=60°,AB=40m,現(xiàn)計劃在內(nèi)部修建一個四個頂點分別落在菱形四條邊上的矩形魚池EFGH,其余部分種花草,園林公司修建魚池,草坪的造價為y(元)與修建面積s(m2)之間的函數(shù)關(guān)系如圖2所示,設(shè)AE為x米.

(1)填空:ED=   m,EH=   m,(用含x的代數(shù)式表示);

(提示:在直角三角形中,30°角所對的直角邊等于斜邊的一半)

(2)若矩形魚池EFGH的面積是300m2,求EF的長度;

(3)EF的長度為多少時,修建的魚池和草坪的總造價最低,最低造價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中、、

1)在圖中作出關(guān)于軸對稱的圖形;

2)寫出、、的坐標,分別是_________)、_________)、____,_____);

3的面積是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠B50°,∠C70°,ADABC的角平分線,DEABE點.

1)求∠EDA的度數(shù);

2AB10,AC8,DE3,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,GCD邊上的一個動點(點GC、D不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DEBG的延長線于點H.

1)求證:①△BCG≌△DCE;②BH⊥DE.

2)當點G運動到什么位置時,BH垂直平分DE?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點EF在對角線BD上,且BFDE

求證:四邊形AECF是菱形.

AB2BF1,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,按如下步驟作圖:

①以點A為圓心,AB長為半徑畫;

②以點C為圓心,CB長為半徑畫弧,兩弧相交于點D;

③連接BD,與AC交于點E,連接ADCD;

1)求證:;

2)當時,猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論;

3)當,,現(xiàn)將四邊形ABCD通過割補,拼成一個正方形,那么這個正方形的邊長是多少?

查看答案和解析>>

同步練習(xí)冊答案