【題目】如圖,拋物線y=ax2+bx+6x軸交于點(diǎn)A6,0),B(﹣1,0),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)若點(diǎn)M為該拋物線對稱軸上一點(diǎn),當(dāng)CM+BM最小時(shí),求點(diǎn)M的坐標(biāo).

3)拋物線上是否存在點(diǎn)P,使ACP為直角三角形?若存在,有幾個(gè)?寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

【答案】1y=x2+5x+6;(2)點(diǎn)M);(3)點(diǎn)P的坐標(biāo)為(﹣2,﹣8)或(4,10)或(2+2,4+2)或(2242).

【解析】

1)已知C0,6),由交點(diǎn)式設(shè)拋物線解析式為y=ax+1)(x6),把C點(diǎn)代入即可求解;

2)先求出拋物線的對稱軸,再作出點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)(即為A點(diǎn)),連接AC交對稱軸于點(diǎn)M,再求AC與對稱軸的交點(diǎn)可得結(jié)果;

3)由點(diǎn)P在拋物線上,可先設(shè)出P點(diǎn)坐標(biāo),然后分別表示出PC2、PA2 、AC2,再按照∠PAC=90°、∠PCA=90°、∠APC=90°三種情況分別求解即可.

1)當(dāng)x=0時(shí),y=ax2+bx+6=6,則C0,6),

設(shè)拋物線的解析式為y=ax+1)(x6),

C0,6)代入得a1(﹣6=6,解得a=1,

∴拋物線的解析式為y=﹣(x+1)(x6),即y=x2+5x+6

2)∵拋物線的對稱軸是直線x=,直線AC的解析式為y=-x+6,點(diǎn)B關(guān)于對稱軸直線x=的對稱點(diǎn)為點(diǎn)A,

∴連接AC,交直線x=于點(diǎn)M,此時(shí)點(diǎn)M滿足CM+BM最小,

當(dāng)x=時(shí),y=,∴點(diǎn)M

3)設(shè)P點(diǎn)坐標(biāo)為(x,﹣x2+5x+6),存在4個(gè)點(diǎn)P,使△ACP為直角三角形.

PC2=x2+(﹣x2+5x2,PA2=x62+(﹣x2+5x+62,AC2=62+62=72

當(dāng)∠PAC=90°,∵PA2+AC2=PC2,

∴(x62+(﹣x2+5x+62+72=x2+(﹣x2+5x2,

整理得x24x12=0,得x1=6(舍去),x2=2,此時(shí)P點(diǎn)坐標(biāo)為(﹣2,﹣8);

當(dāng)∠PCA=90°,∵PC2+AC2=PA2,

72+x2+(﹣x2+5x2=x62+(﹣x2+5x+62,

整理得x24x=0,解得x1=0(舍去),x2=4,此時(shí)P點(diǎn)坐標(biāo)為(4,10);

當(dāng)∠APC=90°,∵PA2+AC2=PC2,

∴(x62+(﹣x2+5x+62+x2+(﹣x2+5x2=72

整理得x310x2+20x+24=0,

x310x2+24x4x+24=0,

xx210x+24)﹣4x6=0,

xx4)(x6)﹣4x6=0,

x6)(x24x4=0,

x6≠0,

所以x24x4=0,解得x1=2+2,x2=22,此時(shí)P點(diǎn)坐標(biāo)為(2+2,4+2)或(22,42);

綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(﹣2,﹣8)或(4,10)或(2+24+2)或(22,42).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E,F(xiàn)分別是DCCB的延長線上的點(diǎn),且DE=BF,連接AE,AF,EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉(zhuǎn)中心____點(diǎn),按順時(shí)針方向旋轉(zhuǎn)___度得到;

(3)BC=8,DE=2,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)社團(tuán)小組想利用所學(xué)的知識了解某廣告牌的高度(圖中GH的長),經(jīng)測量知CD=2m,在B處測得點(diǎn)D的仰角為60°,在A處測得點(diǎn)C的仰角為30°,AB=10m,且A、B、H三點(diǎn)在一條直線上,請根據(jù)以上數(shù)據(jù)計(jì)算GH的長(=1.73,要求結(jié)果精確得到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)是斜邊的中點(diǎn),把繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)落在射線上,點(diǎn)落在點(diǎn),那么的長是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,3),與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:

①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有實(shí)數(shù)根,其中正確的結(jié)論為(

A.②③ B.①③ C.①②③ D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校120名學(xué)生某一周用于閱讀課外書籍的時(shí)間的頻率分布直方圖如圖所示其中閱讀時(shí)間是8~10小時(shí)的頻數(shù)和頻率分別是( )

A. 150.125 B. 150.25 C. 300.125 D. 300.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC、BD相交于點(diǎn)O,EAB的中點(diǎn),且DEAB,AC6,則菱形ABCD的面積是( 。

A. 18 B. 18 C. 9 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,AB2cm,線段AB與直線l之間的距離為cm,線段CD的起始位置在MN處,此時(shí)∠MAB1350,現(xiàn)將線段CD在直線l上向右移動,移動速度為1cm/s,運(yùn)動時(shí)間為ts

1)當(dāng)t=____s時(shí),□ABCD為矩形;

2)線段CD在直線l上移動過程中,當(dāng)□ABCD為菱形時(shí),求線段CD運(yùn)動時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADCD,AB=10,BC=20,∠A=C=30°,則AD的長為_______;CD的長為_________.

查看答案和解析>>

同步練習(xí)冊答案