【題目】如圖,ADCD,AB=10,BC=20,∠A=C=30°,則AD的長為_______;CD的長為_________.

【答案】5+10 10+5

【解析】

B點分別作BEAD,BFCD,垂足分別為E、F,則得BF=ED,BE=DF.

分別解RtAEBRtBFC,求得AE,BE,BF,CF,則可得解.

解:過B點分別作BEAD,BFCD,垂足分別為E、F,則得BF=EDBE=DF.

∵在RtAEB中,∠A=30°,AB=10

AE=AB·cos30°=10×=5, BE=AB·sin30°=10×=5.

又∵在RtBFC中,∠C=30°,BC=20,

BF=BC=×20=10, CF=BC·cos30°=20×=10.

AD=AE+ED=5+10,

CD=CF+FD=10+5.

故答案為: (1). 5+10; (2). 10+5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+6x軸交于點A6,0),B(﹣1,0),與y軸交于點C

1)求拋物線的解析式;

2)若點M為該拋物線對稱軸上一點,當CM+BM最小時,求點M的坐標.

3)拋物線上是否存在點P,使ACP為直角三角形?若存在,有幾個?寫出所有符合條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知⊙O的半徑為2,弦BC的長為,點A為弦BC所對優(yōu)弧上任意一點(B、C兩點除外) (參考數(shù)據(jù):,,

(1)求∠BAC的度數(shù);

(2)求△ABC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,數(shù)學小組發(fā)現(xiàn)米高旗桿的影子落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高米,測得其影長為米,同時測得的長為米,的長為米,測得小橋拱高(弧的中點到弦的距離,即的長)為米,則小橋所在圓的半徑為(

A. B. 5 C. D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,以AB為直徑的⊙OBC相交于點DBD2AD,過點DDEACBA延長線于點E,垂足為點F

1)求tanADF的值;

2)證明:DE⊙O的切線;

3)若⊙O的半徑R5,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A90°,AB6AC8,D、E分別是邊AB、AC的中點,點P從點D出發(fā)沿DE方向運動,過點PPQ⊥BCQ,過點Q QR∥BAACR,當點Q與點C重合時,點P停止運動.設BQx,QRy

(1)求點DBC的距離;

(2)y關于x的函數(shù)關系式(不要求寫出自變量的取值范圍);

(3)是否存在點P,使△PQR是以PQ為一腰的等腰三角形?若存在,請求出所有滿足要求的x的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD.

(1)求證:四邊形ABCD是菱形;

(2)過點C作CE⊥AB交AB的延長線于點E,連接OE,請你先補全圖形,再求出當AB=,BD=2時,OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB2,∠D120°,將菱形翻折,使點A落在邊CD的中點E處,折痕交邊AD,AB于點GF,則AF的長為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,作拋物線關于軸對稱的拋物線,再將拋物線向左平移2個單位,向上平移1個單位,得到的拋物線的函數(shù)解析式是,則拋物線所對應的的函數(shù)解析式是( )

A.B.

C.D.

查看答案和解析>>

同步練習冊答案