【題目】在△中,,,,點(diǎn)是斜邊的中點(diǎn),把繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)落在射線上,點(diǎn)落在點(diǎn),那么的長(zhǎng)是_________.
【答案】
【解析】
根據(jù)題意畫出圖形,根據(jù)勾股定理求出BC=3,再根據(jù)點(diǎn)D是斜邊AB的中點(diǎn),得到DC=DB,故∠DCB=∠B,由旋轉(zhuǎn)得∠B’=∠DCB,再根據(jù)等面積法求出CE=,由
AE=AC-CE求出AE的長(zhǎng),在Rt△A’CE中,求出A’E,然后在Rt△AA’E中,利用AA’=即可求解.
如圖,設(shè)AC與A’B’交于E點(diǎn),
∵∠C=90°,AB=5,AC=4,
∴
∵點(diǎn)D是斜邊AB的中點(diǎn),
∴DC=DB,
∴∠DCB=∠B,
∵把繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)落在射線上,點(diǎn)落在點(diǎn),
∴∠B=∠B’,CA=CA’=4,AB=A’B’=5,∠ACB=∠A’CB’=90°
∴∠B’=∠DCB,
∴A’B’∥BC,
而∠ACB=90°,
∴A’B’⊥AC,
∵CE·A’B’=A’C·CB’
∴CE=
∴AE=AC-CE=4-=
在Rt△A’CE中,A’E=
在Rt△AA’E中,AA’=
故填:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形,是邊上的高,點(diǎn)E是邊的中點(diǎn),點(diǎn)P是上的一個(gè)動(dòng)點(diǎn),當(dāng)最小時(shí),的度數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,的半徑為1;直線經(jīng)過(guò)圓心,交于、兩點(diǎn),直徑,點(diǎn)是直線上異于的一個(gè)動(dòng)點(diǎn),直線交于點(diǎn),點(diǎn)是直線上另一點(diǎn),且.
(Ⅰ)如圖1,點(diǎn)在的內(nèi)部,求證:是的切線;
(Ⅱ)如圖2,點(diǎn)在的外部,且,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】梯形中,∥,,,,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上的動(dòng)點(diǎn).
(1)如圖1,求梯形的周長(zhǎng);
(2)如圖2,聯(lián)結(jié),設(shè),(是銳角),求關(guān)于的關(guān)系式及定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+6與x軸交于點(diǎn)A(6,0),B(﹣1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)若點(diǎn)M為該拋物線對(duì)稱軸上一點(diǎn),當(dāng)CM+BM最小時(shí),求點(diǎn)M的坐標(biāo).
(3)拋物線上是否存在點(diǎn)P,使△ACP為直角三角形?若存在,有幾個(gè)?寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,數(shù)學(xué)小組發(fā)現(xiàn)米高旗桿的影子落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測(cè)算小橋所在圓的半徑的活動(dòng).小剛身高米,測(cè)得其影長(zhǎng)為米,同時(shí)測(cè)得的長(zhǎng)為米,的長(zhǎng)為米,測(cè)得小橋拱高(弧的中點(diǎn)到弦的距離,即的長(zhǎng))為米,則小橋所在圓的半徑為( )
A. B. 5 C. D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com