【題目】花園小區(qū)有一朝向?yàn)檎戏较虻木用駱牵ㄈ鐖D),該居民樓的一樓是高4米的小區(qū)商場,商場以上是居民住房.在該樓的前面16米處要蓋一棟高18米的辦公樓.當(dāng)冬季正午的陽光與水平線的夾角為時(shí),問:
(1)商場以上的居民住房采光是否有影響,為什么?
(2)若要使商場采光不受影響,兩樓應(yīng)相距多少 米?(結(jié)果保留一位小數(shù))
(參考數(shù)據(jù):,,)
【答案】(1) 居民住房的采光有影響,理由見解析;(2)兩樓相距25.8米
【解析】
(1)求是否影響采光,就是求辦公樓在居民樓上的影子部分是否高過4米,設(shè)光線交居民樓于E,那么就是求DE的長度,過點(diǎn)作交于點(diǎn),設(shè)米,則米,在中,,根據(jù)列出方程即可。
(2)要想商場采光不受影響,那么辦公樓的影子的長度等于BD,在直角三角形ABD中,AB=18,∠ADB=那么根據(jù)求得BD的值即可.
解:(1)如圖,光線交于點(diǎn),過點(diǎn)作交于點(diǎn).
則四邊形BDEF為矩形,∴EF=BD,BF=DE;
設(shè)米,則米.
在中,,
,
,
居民住房的采光有影響.
(2)如圖,在中,
,(米).
答:兩樓相距25.8米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校2000名學(xué)生的課外閱讀情況,在全校范圍內(nèi)隨機(jī)調(diào)查了50名學(xué)生,得到他們在某一天各自課外閱讀所用時(shí)間的數(shù)據(jù),將結(jié)果繪制成頻數(shù)分布直方圖(如圖所示).
(1)請分別計(jì)算這50名學(xué)生在這一天課外閱讀所用時(shí)間的眾數(shù)、中位數(shù)和平均數(shù);
(2)請你根據(jù)以上調(diào)查,估計(jì)全校學(xué)生中在這一天課外閱讀所用時(shí)間在1.0小時(shí)以上(含1.0小時(shí))的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,P是BC上一點(diǎn),且BP=3PC,Q是CD的中點(diǎn).
(1)求證:△ADQ∽△QCP;
(2)若PQ=3,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,點(diǎn)D是AB中點(diǎn),連CD,過點(diǎn)D作DE⊥BC于E,過A作AF⊥ED的延長線于F.
(1)若∠B=25°,求∠ADC的度數(shù);
(2)求證:DF=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,點(diǎn)E在BC上,把這個(gè)矩形沿EF折疊后,使點(diǎn)D恰好落在BC邊上的G點(diǎn)處,若矩形面積為且∠AFG=60°,GE=2BG,則折痕EF的長為( )
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸分別交于點(diǎn)、點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),.
(1)求拋物線的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為,求四邊形的面積;
(3)設(shè)拋物線上的點(diǎn)在第一象限,是以為一條直角邊的直角三角形,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:
下列結(jié)論:(1)ac<0;(2)當(dāng)x>1時(shí),y的值隨x值的增大而減小.(3)3是方程ax2+(b)x+c=0的一個(gè)根;(4)當(dāng)<x<3時(shí),ax2+(b)x+c>0.其中正確的個(gè)數(shù)為( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對函數(shù)y=﹣|x2﹣4|的圖象和性質(zhì)進(jìn)行了探究,其探究過程中的列表如下:
x | … | -3 | ﹣2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | m | 0 | -3 | n | -3 | 0 | -5 | … |
(1)求表中m,n的值;
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了該函數(shù)的圖象;
(3)觀察函數(shù)圖象,寫出一條函數(shù)的性質(zhì);
(4)結(jié)合你所畫的函數(shù)圖象,直接寫出不等式﹣|x2﹣4|>x﹣2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)和反比例函數(shù)y=(m≠0)交于點(diǎn)A(4,1)與點(diǎn)B(﹣1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com