【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,點(diǎn)E在BC上,把這個(gè)矩形沿EF折疊后,使點(diǎn)D恰好落在BC邊上的G點(diǎn)處,若矩形面積為且∠AFG=60°,GE=2BG,則折痕EF的長為( )
A. 1 B. C. 2 D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,且經(jīng)過點(diǎn)(1,).點(diǎn)F(0,1)在y軸上.直線y=-1與y軸交于點(diǎn)H.
(1)求該二次函數(shù)的解析式;
(2)設(shè)點(diǎn)P是(1)中圖象上在第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線與直線y=-1交于點(diǎn)M.
①求證:FM平分∠OFP;
②當(dāng)△FPM是等邊三角形時(shí),試求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且.連接PB,試探究PA,PB,PC滿足的等量關(guān)系.
圖1 圖2
(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到,連接,如圖1所示.
由≌可以證得是等邊三角形,再由可得∠APC的大小為 度,進(jìn)而得到是直角三角形,這樣可以得到PA,PB,PC滿足的等量關(guān)系為 ;
(2)如圖2,當(dāng)α=120°時(shí),請參考(1)中的方法,探究PA,PB,PC滿足的等量關(guān)系,并給出證明;
(3)PA,PB,PC滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2008年5月12日14時(shí)28分四川汶川發(fā)生里氏8.0級強(qiáng)力地震.某市接到上級通知,立即派出甲、乙兩個(gè)抗震救災(zāi)小組乘車沿同一路線趕赴距出發(fā)點(diǎn)480千米的災(zāi)區(qū).乙組由于要攜帶一些救災(zāi)物資,比甲組遲出發(fā)1.25小時(shí)(從甲組出發(fā)時(shí)開始計(jì)時(shí)).圖中的折線、線段分別表示甲、乙兩組的所走路程y甲(千米)、y乙(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系對應(yīng)的圖象.請根據(jù)圖象所提供的信息,解決下列問題:
(1)由于汽車發(fā)生故障,甲組在途中停留了 小時(shí);
(2)甲組的汽車排除故障后,立即提速趕往災(zāi)區(qū).請問甲組的汽車在排除故障時(shí),距出發(fā)點(diǎn)的路程是多少千米?
(3)為了保證及時(shí)聯(lián)絡(luò),甲、乙兩組在第一次相遇時(shí)約定此后兩車之間的路程不超過25千米,請通過計(jì)算說明,按圖象所表示的走法是否符合約定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要建一個(gè)如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)部的一點(diǎn),∠AOB=30°,OP=8cm,M,N是OA,OB上的兩個(gè)動(dòng)點(diǎn),則△MPN周長的最小值_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組在學(xué)習(xí)二次根式時(shí)進(jìn)行了如下題目的探索研究:
(1)填空 ; ;
(2)觀察第(1)題的計(jì)算結(jié)果回答:一定等于
. . . .不確定
(3)根據(jù)(1)、(2)的計(jì)算結(jié)果進(jìn)行分析總結(jié)的規(guī)律,計(jì)算:.
(4)請你參照數(shù)學(xué)興趣小組的研究規(guī)律,化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:在圖①的矩形MNPQ中,點(diǎn)E、F、G、H分別在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.
操作與探究:在圖②,圖③的矩形ABCD中,AB=4,BC=8點(diǎn)E、F分別在BC、CD邊上,試?yán)谜叫尉W(wǎng)格分別作出兩圖中矩形ABCD的反射四邊形EFGH,并求出每個(gè)反射四邊形EFGH的周長.
發(fā)現(xiàn)與應(yīng)用:由前面的操作可以發(fā)現(xiàn)一個(gè)矩形有不同的反射四邊形,且這些反射四邊形的周長都相等,若在圖①矩形MNPQ中,MN=3,NP=4則其反射四邊形EFGH的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,D是AC邊上一點(diǎn),∠A=36,∠C=72,∠ADB=108。
求證:(1)AD=BD=BC;
(2)點(diǎn)D是線段AC的黃金分割點(diǎn)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com