【題目】如圖,已知∠AOB=140,∠COE與∠EOD互余,OE平分∠AOD.
(1)若∠COE=38,求∠DOE和∠BOD的度數(shù);
(2)設(shè)∠COE=α,∠BOD=β,請(qǐng)?zhí)骄?/span>α與β之間的數(shù)量關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師在黑板上出了一道解方程的題:4(2x﹣1)=1﹣3(x+2),小明馬上舉手,要求到黑板上做,他是這樣做的:8x﹣4=1﹣3x+6,①
8x﹣3x=1+6﹣4,②
5x=3,③
x=.④
老師說(shuō):小明解一元一次方程沒有掌握好,因此解題時(shí)出現(xiàn)了錯(cuò)誤,請(qǐng)你指出他錯(cuò)在哪一步:________(填編號(hào)),并說(shuō)明理由.然后,你自己細(xì)心地解這個(gè)方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷商從市場(chǎng)得知如下信息:
某品牌空調(diào)扇 | 某品牌電風(fēng)扇 | |
進(jìn)價(jià)(元/臺(tái)) | 700 | 100 |
售價(jià)(元/臺(tái)) | 900 | 160 |
他現(xiàn)有40000元資金可用來(lái)一次性購(gòu)進(jìn)該品牌空調(diào)扇和電風(fēng)扇共100臺(tái),設(shè)該經(jīng)銷商購(gòu)進(jìn)空調(diào)扇臺(tái),空調(diào)扇和電風(fēng)扇全部銷售完后獲得利潤(rùn)為元.
(1)求關(guān)于的函數(shù)解析式;
(2)利用函數(shù)性質(zhì),說(shuō)明該經(jīng)銷商如何進(jìn)貨可獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒3個(gè)單位,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t=______時(shí),CP把△ABC的面積分成相等的兩部分;
(2)當(dāng)t=5時(shí),CP把△ABC分成的兩部分面積之比是S△APC:S△BPC=______
(3)當(dāng)t=______時(shí),△BPC的面積為18.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有一長(zhǎng)方形的空地,長(zhǎng)為米,寬為米,建筑商把它分成甲、乙、丙三部分,甲和乙為正方形.現(xiàn)計(jì)劃甲建筑成住宅區(qū),乙建成商場(chǎng)丙開辟成公園.
請(qǐng)用含的代數(shù)式表示正方形乙的邊長(zhǎng); ;
若丙地的面積為平方米,請(qǐng)求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).
(1)探求AO到OD的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖②,若P,N分別為BE,BC上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)PN+PD的長(zhǎng)度取得最小值時(shí),求BP的長(zhǎng)度;
(Ⅱ)如圖③,若點(diǎn)Q在線段BO上,BQ=1,則QN+NP+PD的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動(dòng)點(diǎn)P從A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)用含t的代數(shù)式表示點(diǎn)P與A的距離:PA= ;點(diǎn)P對(duì)應(yīng)的數(shù)是 ;
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),若P、Q同時(shí)出發(fā),求:當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P和點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,按如下步驟作圖:①以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧;②以點(diǎn)C為圓心,CB長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)AD,CD.
(1)填空:△ABC≌△ ;AC和BD的位置關(guān)系是
(2)如圖2,當(dāng)AB=BC時(shí),猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論.
(3)在(2)的條件下,若AC=8cm,BD=6cm,則點(diǎn)B到AD的距離是 cm,若將四邊形ABCD通過(guò)割補(bǔ),拼成一個(gè)正方形,那么這個(gè)正方形的邊長(zhǎng)為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2011貴州安順,23,10分)如圖,已知反比例函數(shù)的圖像經(jīng)過(guò)第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函數(shù)的圖象上另一點(diǎn)C(n,一2).
⑴求直線y=ax+b的解析式;
⑵設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com