【題目】著名的瑞士數學家歐拉曾指出:可以表示為四個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為四個整數平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數為“不變心的數”.實際上,上述結論可減弱為:可以表示為兩個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為兩個整數平方之和.
【動手一試】
試將改成兩個整數平方之和的形式. ;
【閱讀思考】
在數學思想中,有種解題技巧稱之為“無中生有”.例如問題:將代數式改成兩個平方之差的形式.解:原式﹒
【解決問題】
請你靈活運用利用上述思想來解決“不變心的數”問題:將代數式改成兩個整數平方之和的形式(其中a、b、c、d均為整數),并給出詳細的推導過程﹒
科目:初中數學 來源: 題型:
【題目】某中學九年級學生開展測量物體高度的實踐活動,他們要測量學校一幢教學樓的高度,如圖,他們先在點C測得教學樓AB的頂點A的仰角為30°,然后向教學樓前進20米到達點D,又測得點A的仰角為45°,請根據這些數據,求這幢教學樓的高度.(最后結果精確到1米,參考數據 ≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內,AB與y軸的正半軸交與點E,已知點B(﹣1,0).
(1)點A的坐標: , 點E的坐標:;
(2)若二次函數y=﹣ x2+bx+c過點A、E,求此二次函數的解析式;
(3)P是AC上的一個動點(P與點A、C不重合)連結PB、PD,設l是△PBD的周長,當l取最小值時,求點P的坐標及l(fā)的最小值并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2 的正方形ABCD中,點E為AD邊的中點,將△ABE沿BE翻折,使點A落在點A′處,作射線EA′,交BC的延長線于點F,則CF= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校20周年校慶時,需要在草場上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達C處,此時,在AF延長線上的點B處測得氣球和旗桿EF的頂點E在同一直線上.
(1)已知旗桿高為12米,若在點B處測得旗桿頂點E的仰角為30°,A處測得點E的仰角為45°,試求AB的長(結果保留根號);
(2)在(1)的條件下,若∠BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(結果保留根號)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點A(﹣1,0)、B(3,0)、點C三點.
(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設平移的時間為t秒,試求S與t之間的函數關系式?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE= AC,連接CE,OE,連接AE,交OD于點F.若AB=2,∠ABC=60°,則AE的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長交AD于E,交BA的延長線于點F.
(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( )
A. BD=DC,AB=AC B. ∠ADB=∠ADC,BD=DC
C. ∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com