【題目】在等邊△ABC中,點(diǎn)D為AC上一點(diǎn),連接BD,直線(xiàn)l與AB,BD,BC分別相交于點(diǎn)E,P,F,且∠BPF=60°.
(1)如圖(1),寫(xiě)出圖中所有與△BPF相似的三角形,并選擇其中一對(duì)給予證明;
(2)若直線(xiàn)l向右平移到圖(2),圖(3)的位置時(shí)(其它條件不變),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)寫(xiě)出來(lái)(不需證明),若不成立,請(qǐng)說(shuō)明理由;
(3)探究:如圖(1),當(dāng)BD滿(mǎn)足什么條件時(shí)(其它條件不變),EF=BF?請(qǐng)寫(xiě)出探究結(jié)果,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】
(1)先判斷出∠BPF=∠EBF=60°,再結(jié)合公共角即可得出結(jié)論;
(2)同(2)的方法即可得出結(jié)論;
(3)由BD平分∠ABC得到∠ABP=∠PBF=30°,再由∠BPF=60°得到∠BEP=90°,從而得到∠BEF=30°,再利用銳角三角函數(shù)tan60°=即可得出結(jié)論.
(1)△BPF∽△EBF,△BPF∽△BCD.
以△BPF∽△EBF為例,證明如下:
∵∠BPF=∠EBF=60°,∠BFP=∠BFE,
∴△BPF∽△EBF.
(2)△BPF∽△EBF,△BPF∽△BCD成立.
(3)當(dāng)BD平分∠ABC時(shí),EF=BF.理由如下:
∵BD平分∠ABC,
∴∠ABP=∠PBF=30°.
∵∠BPF=60°,
∴∠BEP=90°,
∴∠BEF=60°-30°=30°.
在Rt△BEF中,∠EBF=60°,
∴tan60°=,即EF=BF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是拋物線(xiàn)y=﹣x2+x+2在第一象限上的點(diǎn),過(guò)點(diǎn)P分別向x軸和y軸引垂線(xiàn),垂足分別為A,B,則四邊形OAPB周長(zhǎng)的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一輪船在A處測(cè)得南偏東30°方向上有一小島P,輪船沿正南方向航行至B處,測(cè)得小島P在南偏東45°方向上,按原方向再航行10海里至C處,測(cè)得小島P在正東方向上,則A,B之間的距離是( )
A. 10 海里 B. (10-10)海里
C. 10海里 D. (10-10)海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為1的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.
(1)當(dāng)時(shí),求線(xiàn)段OD的長(zhǎng);
(2)在△DOE中是否存在長(zhǎng)度保持不變的邊?如果存在,請(qǐng)指出是哪條邊,并求其長(zhǎng)度;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,∠CAB=∠ACB,過(guò)點(diǎn)B作BE⊥AB交AC于點(diǎn)E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線(xiàn)段OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線(xiàn)y=ax2+bx+4過(guò)點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線(xiàn)段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).
(1)請(qǐng)直接寫(xiě)出B、C兩點(diǎn)的坐標(biāo)及拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)P作PE⊥BC,交拋物線(xiàn)于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=∠OCD?
(3)點(diǎn)Q是x軸上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請(qǐng)求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB的直角邊OA在x軸上,OA=2,AB=1,將Rt△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到Rt△COD,拋物線(xiàn)經(jīng)過(guò)B、D兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)連接BD,點(diǎn)P是拋物線(xiàn)上一點(diǎn),直線(xiàn)OP把△BOD的周長(zhǎng)分成相等的兩部分,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=ax2﹣a與y=﹣(a≠0)在同一直坐標(biāo)系中的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)鋼筋三角架三邊長(zhǎng)分別為20cm,50cm,60cm,現(xiàn)要再做一個(gè)與其相似的鋼筋三角架,而只有長(zhǎng)為30cm和50cm的兩根鋼筋,要求以其中的一根為一邊,從另一根截下兩段(允許有余料)作為另兩邊,則不同的截法有( ).
A. 一種 B. 兩種 C. 三種 D. 四種
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com