【題目】如圖,在ABCD中,對角線ACBD相交于點O,∠CAB=∠ACB,過點BBEABAC于點E

(1)求證:ACBD;

(2)若AB=14,cos∠CAB=,求線段OE的長.

【答案】1)見解析;(2

【解析】試題分析:本題考查了解直角三角形及菱形的判定與性質(zhì)、平行四邊變形的判定與性質(zhì)的知識,解題的關(guān)鍵是讀懂題意,選擇合適的邊角關(guān)系,難度不大.(1)、根據(jù)∠CAB=∠ACB利用等角對等邊得到AB=CB,從而判定平行四邊形ABCD是菱形,根據(jù)菱形的對角線互相垂直即可證得結(jié)論;(2)、分別在Rt△AOB中和在Rt△ABE中求得AOAE,從而利用OE=AE﹣AO求解即可.

試題解析:(1∵∠CAB=∠ACB∴AB=CB, ∴ABCD是菱形. ∴AC⊥BD

2)在RtAOB中,cosCAB==AB=14, AO=14×=,

RtABE中,cosEAB==,AB=14, AE=AB=16OE=AE﹣AO=16﹣=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點D與點A關(guān)于點E對稱,PB分別與線段CF,AF相交于P,M

1)求證:AB=CD;

2)若∠BAC=2∠MPC,請你判斷∠F∠MCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BEAC于點F,交邊AD于點E,連結(jié)DF,若點EAD的中點,則DF的長為__________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB=90°,∠BAC=60°,BC=2,DAB的中點,直線BMAC,E是邊CA延長線上一點,將△EDC沿CD翻折得到△EDC,射線DE′交直線BM于點F

1)如圖1,當點E′與點F重合時,求證:四邊形ABEC為平行四邊形;

2)如圖2,延長ED交線段BF于點G

①設(shè)BG=x,GF=y,求yx的函數(shù)關(guān)系式;

②若△DFG的面積為3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)

(2)

(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點OABAC,AB3cm,BC5cm.PA點出發(fā)沿AD方向勻速運動,速度為1cm/s.連結(jié)PO并延長交BC于點Q,設(shè)運動時間為t(0t5)

(1)t為何值時,四邊形ABQP是平行四邊形?

(2)設(shè)四邊形OQCD的面積為y(cm2),求yt之間的函數(shù)關(guān)系式;

(3)是否存在某一時刻t,使點O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.

  備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把長方形沿AE對折后點D落在BC邊的點F,BC=5cm,

AB=4cm,求:(1)CF的長;(2)EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售進價為2元的雪糕,在銷售中發(fā)現(xiàn),此商品的日銷售單價x(元)與日銷售量y(根)之間有如下關(guān)系:

日銷售單價x(元)

3

4

5

6

日銷售量y(根)

40

30

24

20

1)猜測并確定yx之間的函數(shù)關(guān)系式;

2)設(shè)此商品銷售利潤為W,求Wx的函數(shù)關(guān)系式,若物價局規(guī)定此商品最高限價為10/根,你是否能求出商品日銷售最大利潤?若能請求出,不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班在一塊展示板上同時展示形狀與大小均相同的長方形(圖甲)的班徽設(shè)計作品,并將這些作品排成一個長方形(作品不完全重合).現(xiàn)需要在每張作品的四個角落都釘上圖釘,如果作品有角落相鄰,那么相鄰的角落共享一枚圖釘(例如,用9枚圖釘將4張作品釘在展示板上,如圖乙所示).若有38枚圖釘可供選用,則最多可以展示設(shè)計作品件數(shù)(

A.B.C.D.

查看答案和解析>>

同步練習冊答案