【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù),點表示數(shù),且滿足

1 , ,

2)若將數(shù)軸折疊,使得點與點重合,則點與表示 的數(shù)的點重合;

3)點以每秒3個單位長度的速度從點向右運動.點以每秒2個單位長度的速度從點向右運動(點、點同時出發(fā)),經(jīng)過幾秒,點、點分別到點的距離相等?

【答案】1-10,1,7;(2-4;(3)經(jīng)過11秒或秒時,點、點分別到點的距離相等.

【解析】

1)根據(jù)非負數(shù)的性質(zhì)即可解答;

2)先求出數(shù)軸沿著表示的數(shù)對折,即可求出點B關(guān)于表示-4的數(shù)重合;

3)設(shè)點MN運動的時間為t秒,表達出點MN表示的數(shù),再根據(jù)題意列出方程解答即可.

解:(1)∵

,,

,

故答案為:-10,1,7

2)∵,

∴數(shù)軸沿著表示的數(shù)對折,

∴點B與表示-4的數(shù)重合,

故答案為:-4

3)設(shè)點M,N運動的時間為t秒,則

由題意得:點M表示的數(shù)為,點N表示的數(shù)為,

∴當(dāng)點、點分別到點的距離相等,

所以經(jīng)過11秒或秒時,點、點分別到點的距離相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在ABC中,∠ACB=90°,ACBC,直線l過點C,點AB在直線l同側(cè),BDlAEl,垂足分別為D,E.求證:AEC≌△CDB

(2)如圖2,AEAB,且AEABBCCD,且BCCD,利用(1)中的結(jié)論,請按照圖中所標(biāo)注的數(shù)據(jù)計算圖中實線所圍成的圖形的面積S=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三個頂點坐標(biāo)為A(-4,4),B(-3,1),C(12)。

1)將ABC向右平移5個單位,得到A1B1C1,畫出圖形,并直接寫出A1的坐標(biāo);

2)作出A1B1C1關(guān)于x軸對稱的圖形A2B2C2,并直接寫出C2點的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠XOY=60°,點A在邊OX上,OA=2.過點AACOY于點C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點PABC圍成的區(qū)域(包括各邊)內(nèi)的一點,過點PPDOYOX于點D,作PEOXOY于點E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=m,BC=n,將此矩形繞點B順時針方向旋轉(zhuǎn)θ(0°<θ<90°)得到矩形A1BC1D1,點A1在邊CD上.

(1)若m=2,n=1,求在旋轉(zhuǎn)過程中,點D到點D1所經(jīng)過路徑的長度;

(2)將矩形A1BC1D1繼續(xù)繞點B順時針方向旋轉(zhuǎn)得到矩形A2BC2D2,點D2BC的延長線上,設(shè)邊A2BCD交于點E,若=﹣1,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),以lcm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當(dāng)一個點到達點C時,另一個點也隨之停止.設(shè)運動時間為t(s),APQ的面積為S(cm2),下列能大致反映St之間函數(shù)關(guān)系的圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時數(shù)學(xué)實踐活動小組設(shè)計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速.在l外取一點P,作PCl,垂足為點C.測得PC=30米,∠APC=71°,BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學(xué)的數(shù)學(xué)知識說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學(xué)課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在△ABC中,OBOC分別平分∠ABC和∠ACB,過ODEBC,分別交AB、AC于點D、E,若DE=8,則線段BD+CE的長為

A. 5B. 6C. 7D. 8

查看答案和解析>>

同步練習(xí)冊答案