【題目】如圖:點P是四邊形ABCD外接圓⊙O上的任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD,連接PA,PB,PC,若PA= ,求點A到PB和PC的距離之和AE+AF是多少?

【答案】

【解析】試題分析:

如圖,連接BO、CO,由已知條件易證∠AOB=∠BOC=∠COD=60°,從而可得∠APE=∠BPC=30°,∠APF=60°,結(jié)合AE⊥BP于點E,AF⊥PC于點F,在Rt△APERt△AOF中,利用30°的銳角所對直角邊是斜邊的一半,和勾股定理可求得AEAF的長,然后相加即可得到答案.

試題解析

連接BO、CO,

∵AD⊙O的直徑,AB=BC=CD,

,

∴∠AOB =∠COB =∠COD= 60°

∴∠APB =∠CPB =30°

∴∠CPA =∠APB +∠CPB =60°

∴∠PAF =30°

∵AE⊥PB,AF⊥PC

AE= ,PF= ,

AF=

AEAF = .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,點E是邊BC的中點,AFED,AEDF

1)求證:四邊形AEDF為菱形;

2)試探究:當ABBC  ,菱形AEDF為正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是矩形ABCD的對角線AC上一點,過點PEFBC,分別交ABCD于點E,F,連接PB,PD.AE2,PF8.則圖中陰影部分的面積為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中, , 平分

于點,O的外接圓.

1)求證: 是⊙O的切線;

2)若, ,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:

1)畫出ABC關(guān)于點O成中心對稱的圖形A1B1C1;

2 A1B1C1沿y軸正方向平移5個單位得到A2B2C2 ,畫出A2B2C2;

3)若ABCA2B2C2 繞點P旋轉(zhuǎn)重合,則點P的坐標為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線AC、BD相交于點O,延長AB至點E,使BEAB,連接CE

1)求證:四邊形BECD是平行四邊形;

2)若∠E60°,AC,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,△ABC中,AB=2,BC=4,DBC邊上一點,BD=1.

(1)求證:△ABD△CBA;

(2)在原圖上作DE∥ABAC與點E,請直接寫出另一個與△ABD相似的三角形,并求出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點分別為E、F,DFAC交于點M,DEBC交于點N。

(1)求證:△ADM△BND;

(2)在∠EDF繞點D旋轉(zhuǎn)的過程中:

①探究三條線段CD、CE、CF之間的數(shù)量關(guān)系,并說明理由;

②若CE=4,CF=2,求DN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線yxbx軸交于點A2,0),Py軸上B點下方一點,以AP為腰作等腰直角三角形APM,點M落在第四象限,若PBmm0),用含m的代數(shù)式表示點M的坐標是(

A.(m-2,m+4)B.(m+2m+4)C.(m+2,-m-4)D.(m-2-m-4)

查看答案和解析>>

同步練習冊答案