【題目】已知:如圖,直線yxbx軸交于點(diǎn)A20),Py軸上B點(diǎn)下方一點(diǎn),以AP為腰作等腰直角三角形APM,點(diǎn)M落在第四象限,若PBmm0),用含m的代數(shù)式表示點(diǎn)M的坐標(biāo)是(

A.(m-2,m+4)B.(m+2m+4)C.(m+2,-m-4)D.(m-2,-m-4)

【答案】C

【解析】

先利用待定系數(shù)法求出直線AB的函數(shù)解析式,從而得OP的長(zhǎng),再證△PAO≌△MPN,得到OP=NM,OA=NP,進(jìn)而用m表示出NMON,結(jié)合點(diǎn)M在第四象限,表示出點(diǎn)M的坐標(biāo)即可.

直線yxbx軸交于點(diǎn)A(2,0),

0=2+b,解得:b=-2,
∴直線AB的解析式為:y=x2,

x=0,得y=-2,

B(0,-2),

PBm,

OP=2+m,
MNy軸于點(diǎn)N.
△APM為等腰直角三角形,PM=PA,
∠APM=90°
∠OPA+∠NPM=90°,
∠NMP+∠NPM=90°
∠OPA=∠NMP,
△PAO△MPN
,
△PAO≌△MPN(AAS),
OP=NM= m+2,OA=NP=2,
ON=2+m+2=4+m,MN=OP=2+m,
∵點(diǎn)M在第四象限
∴點(diǎn)M的坐標(biāo)為(2+m,4m).

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:點(diǎn)P是四邊形ABCD外接圓⊙O上的任意一點(diǎn),且不與四邊形頂點(diǎn)重合,若AD是⊙O的直徑,AB=BC=CD,連接PA,PB,PC,若PA= ,求點(diǎn)A到PB和PC的距離之和AE+AF是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長(zhǎng)CEBA交于點(diǎn)F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫出BCCD的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(4,0).

1)求拋物線的解析式;

2)判斷△ABC的形狀,直接寫出△ABC外接圓的圓心坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店出售某種水果,已知該水果的進(jìn)價(jià)為6/千克,若以9/千克的價(jià)格銷售,則每天可售出200千克若以11/千克的價(jià)格銷售,則每天可售出120千克.通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系

1y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

2當(dāng)銷售單價(jià)為何值時(shí)該水果店銷售這種水果每天獲取的利潤(rùn)達(dá)到280元?

3水果店在進(jìn)貨成本不超過(guò)720元時(shí),銷售單價(jià)定為多少元可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:

(1)若工廠計(jì)劃獲利14萬(wàn)元,問(wèn)A、B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?

(2)若工廠投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問(wèn)工廠有哪幾種生產(chǎn)方案?

(3)(2)條件下,哪種方案獲利最大?并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)等腰直角三角形ABCCDE中,∠ACB=∠DCE90°,AB13,CD5,CDE繞點(diǎn)C在平面內(nèi)自由旋轉(zhuǎn),當(dāng)A、ED三點(diǎn)共線時(shí),AD的長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點(diǎn)B落在點(diǎn)E處,AECD于點(diǎn)F,連接DE

1)求證:△DEC≌△EDA;

2)求DF的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖1,在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)軸的正半軸上,點(diǎn)的坐標(biāo)為,四邊形是菱形,直線于點(diǎn),交軸于點(diǎn),連接

1)點(diǎn)的坐標(biāo)是______;

2)求直線的函數(shù)解析式;

3)如圖2,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線方向以1個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)勻速運(yùn)動(dòng),設(shè)的面積為),點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,求之間的函數(shù)關(guān)系式(要求寫出自變量的取值范圍)

查看答案和解析>>

同步練習(xí)冊(cè)答案