【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個(gè)實(shí)數(shù)根;
(2)如果拋物線(xiàn)y=mx2+(3m+1)x+3與x軸交于A、B兩個(gè)整數(shù)點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且m為正整數(shù),求此拋物線(xiàn)的表達(dá)式;
(3)在(2)的條件下,拋物線(xiàn)y=mx2+(3m+1)x+3與y軸交于點(diǎn)C,點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為D,設(shè)此拋物線(xiàn)在﹣3≤x≤﹣ 之間的部分為圖象G,如果圖象G向右平移n(n>0)個(gè)單位長(zhǎng)度后與直線(xiàn)CD有公共點(diǎn),求n的取值范圍.

【答案】
(1)證明:由根的判別式,可得:△=(3m+1)2﹣4×m×3=(3m﹣1)2,

∵(3m﹣1)2≥0,

∴△≥0,

∴原方程有兩個(gè)實(shí)數(shù)根


(2)解:令y=0,那么mx2+(3m+1)x+3=0,

解得:x1=﹣3,x2=﹣

∵拋物線(xiàn)與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且m為正整數(shù),

∴m=1,

∴拋物線(xiàn)的解析式為:y=x2+4x+3


(3)解:如圖,

∵當(dāng)x=0時(shí),y=3,

∴C(0,3),

∵當(dāng)y=0時(shí),x1=﹣3,x2=﹣1,

又∵點(diǎn)A在點(diǎn)B的左側(cè),

∴A(﹣3,0),B(﹣1,0),

∵點(diǎn)D與點(diǎn)B關(guān)于y軸對(duì)稱(chēng),

∴D(1,0),

設(shè)直線(xiàn)CD的解析式為:y=kx+b,

,解得: ,

∴直線(xiàn)CD的表達(dá)式為:y=﹣3x+3,

又∵當(dāng)x=﹣ 時(shí),y= ,

∴點(diǎn)E(﹣ ),

∴平移后,點(diǎn)A,E的對(duì)應(yīng)點(diǎn)分別為A′(﹣3+n,0),E′(﹣ +n, ),

當(dāng)直線(xiàn)y=﹣3x+3經(jīng)過(guò)點(diǎn)A′(﹣3+n,0)時(shí),得:﹣3(﹣3+n)+3=0,解得:n=4,

當(dāng)直線(xiàn)y=﹣3x+3經(jīng)過(guò)點(diǎn)E′(﹣ +n, ),時(shí),得:﹣3(﹣ +n)+3= ,解得:n= ,

∴n的取值范圍是 ≤n≤4.


【解析】(1)先求出根的判別式△,判斷△的取值范圍,即可得證;(2)根據(jù)求根公式表示出兩根,由題意,求出m的值,可得拋物線(xiàn)的解析式;(3)點(diǎn)求出點(diǎn)A,B,C,D的坐標(biāo),根據(jù)待定系數(shù)法求出直線(xiàn)CD的解析式,設(shè)平移后,點(diǎn)A,E的對(duì)應(yīng)點(diǎn)分別為A′(﹣3+n,0),E′(﹣ +n, ),根據(jù)點(diǎn)在直線(xiàn)上,求出取值范圍即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角三角形ABC中,∠ACB=90°,∠A=33°,將三角形ABC沿AB方向向右平移得到三角形DEF.

(1)試求出∠E的度數(shù);

(2)若AE=9 cm,DB=2 cm,求出BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,E,F(xiàn),C在一條直線(xiàn)上,AE=CF,過(guò)E,F(xiàn)分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DAB的中點(diǎn),點(diǎn)FBC延長(zhǎng)線(xiàn)上一點(diǎn),連接DF,交AC于點(diǎn)E,連接BE,A=ABE.

(1)求證:DF是線(xiàn)段AB的垂直平分線(xiàn);

(2)當(dāng)AB=AC,A=46°時(shí),求∠EBC及∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC中, AO∠BAC的角平分線(xiàn), D AO上一點(diǎn),以 CD為一邊且在 CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE.

(2)延長(zhǎng)BEQ, PBQ上一點(diǎn),連接 CP、CQ使 CP=CQ=5,若 BC=6,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】常州每年舉行一次“一袋牛奶的暴走”公益活動(dòng),用步行的方式募集善款,其中挑戰(zhàn)型路線(xiàn)”的起點(diǎn)是淹城站,并沿著規(guī)定的線(xiàn)路到達(dá)終點(diǎn)吾悅國(guó)際站.甲、乙兩組市民從起點(diǎn)同時(shí)出發(fā),已知甲組的速度為6km/h,乙組的速度為5km/h,當(dāng)甲組到達(dá)終點(diǎn)后,立即以3km/h的速度按原線(xiàn)路返回,并在途中的P站與乙組相遇,P站與吾悅國(guó)際站之間的路程為1.5km

(1)求“挑戰(zhàn)型路線(xiàn)”的總長(zhǎng);

(2)當(dāng)甲組到達(dá)終點(diǎn)時(shí),乙組離終點(diǎn)還有多少路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】讀句畫(huà)圖:如圖,直線(xiàn)CD與直線(xiàn)AB相交于C,

根據(jù)下列語(yǔ)句畫(huà)圖:

1)過(guò)點(diǎn)PPQCD,交AB于點(diǎn)Q;

2)過(guò)點(diǎn)PPRCD,垂足為R;

3)若∠DCB=120°,猜想∠PQC是多少度?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮家距離學(xué)校8千米,一天早晨小亮騎車(chē)上學(xué),途中恰好遇到交警叔叔在十字路口帶領(lǐng)小朋友過(guò)馬路,小亮停下車(chē)協(xié)助交警叔叔,幾分鐘后,為了不遲到,他加快了騎車(chē)到校的速度.到校后,小亮根據(jù)這段經(jīng)歷畫(huà)出了過(guò)程圖象如圖.該圖象描繪了小亮騎行的路程(千米)與他所用的時(shí)間(分鐘)之間的關(guān)系,請(qǐng)根據(jù)圖象,解答下列問(wèn)題:

1)小亮騎車(chē)行駛了多少千米時(shí),協(xié)助交警叔叔?協(xié)助交警叔叔用了幾分鐘?

2)小亮從家出發(fā)到學(xué)校共用了多少時(shí)間?

3)如果沒(méi)有協(xié)助交警叔叔,仍保持出發(fā)時(shí)的速度行駛,那么他比實(shí)際情況早到或晚到學(xué)校多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直線(xiàn)上一點(diǎn)為端點(diǎn)作射線(xiàn),使.將一個(gè)直角三角板(其中)的直角頂點(diǎn)放在點(diǎn)處.

1)如圖①,若直角三角板的一邊放在射線(xiàn)上,則____;

2)如圖,將直角三角板繞點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置,若恰好平分,則所在的射線(xiàn)是否為的平分線(xiàn)?請(qǐng)說(shuō)明理由;

3)如圖③,將含角的直角三角板從圖①的位置開(kāi)始繞點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為,旋轉(zhuǎn)的時(shí)間為秒,在旋轉(zhuǎn)過(guò)程中是否存在三角板的一條邊與垂直?若存在,請(qǐng)直接寫(xiě)出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案