【題目】在平面直角坐標(biāo)系中,的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上(如圖所示).
(1)寫(xiě)出點(diǎn)的坐標(biāo)____________,且該點(diǎn)到軸的距離為__________.
(2)作關(guān)于軸的軸對(duì)稱圖形.
(3)判斷的形狀,并說(shuō)明理由.
【答案】(1);1;(2)作圖見(jiàn)詳解;(3)是等腰直角三角形,理由見(jiàn)詳解
【解析】
(1)根據(jù)點(diǎn)的位置即可寫(xiě)出坐標(biāo),點(diǎn)橫坐標(biāo)的絕對(duì)值即為該點(diǎn)到軸的距離;
(2)根據(jù)“關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)”分別作出關(guān)于y軸對(duì)稱的點(diǎn),再順次連接即可;
(3)運(yùn)用勾股定理分別求出的三邊長(zhǎng),可得有兩邊相等,再運(yùn)用勾股定理的逆定理證明是直角三角形,即可判斷三角形的形狀.
解:(1)由圖可讀出:,
∵點(diǎn)橫坐標(biāo)的絕對(duì)值即為該點(diǎn)到軸的距離;
∴點(diǎn)到軸的距離為1;
故答案為:;1.
(2)如下圖,即為所作圖形.
(3)是等腰直角三角形,理由如下:
根據(jù)勾股定理即可得到:,,,
∴,,
∴,
∴是直角三角形,且,
又∵,
∴是等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,每個(gè)小方格的邊長(zhǎng)為一個(gè)單位長(zhǎng)度.
(1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________;
(2)點(diǎn)關(guān)于軸對(duì)稱點(diǎn)的坐標(biāo)為__________;
(3)在直線上找一點(diǎn),使為等腰三角形,點(diǎn)坐標(biāo)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象過(guò)點(diǎn)與.
(1)在給出的平面直角坐標(biāo)系中畫(huà)出它的圖象;
(2)求該一次函數(shù)的解析式;
(3)判斷是否在這個(gè)一次函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.
(1)求證:△ACD≌△CBE;
(2)若AD=12,DE=7,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點(diǎn),四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)E,BC= ,CD= ,則sin∠AEB的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B.
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(a,b)是直線y=-x-5與雙曲線的一個(gè)交點(diǎn),則以a、b兩數(shù)為根的一元二次方程是( ).
A. x2-5x+6=0 B. x2+5x+6=0 C. x2-5x-6="0" D. x2+5x-6=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A(0,3),B(﹣4,﹣)兩點(diǎn).
(1)求b,c的值.
(2)二次函數(shù)y=﹣x2+bx+c的圖象與x軸是否有公共點(diǎn),求公共點(diǎn)的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時(shí),∠EDC= °,∠DEC= °;點(diǎn)D從B向C運(yùn)動(dòng)時(shí),∠BDA逐漸變 (填“大”或“小”);
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE,請(qǐng)說(shuō)明理由;
(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫(xiě)出∠BDA的度數(shù).若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com