【題目】如圖,直線與雙曲線交于兩點,與軸交于點,已知點的坐標為,點坐標為。
(1)求函數(shù)的表達式和點坐標;
(2)觀察圖像,當時,直接寫出的取值范圍。
【答案】(1)y1=-x+3,B(1,2);(2)0<x<1或x>2
【解析】
(1)先把A(2,1),C(0,3)代入,利用待定系數(shù)法可確定函數(shù)y1的表達式,再確定反比例函數(shù)解析式,然后解由兩解析式所組成的方程組可確定B點坐標;
(2)由可判斷出,一次函數(shù)圖象應在反比例函數(shù)圖象下方,再觀察函數(shù)圖象可得到取值范圍.
解:(1)將A(2,1)、C(0,3)代入得,解得,
∴,
將A(2,1)代入得,
∴
解方程組,得或
∴B(1,2);
(2)由圖象可得,當或時,一次函數(shù)圖象在反比例函數(shù)圖象下方,
∴當時,的取值范圍是或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一輛轎車在經(jīng)過某路口的感應線B和C處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應線之間距離BC為6.2m,在感應線B、C兩處測得電子警察A的仰角分別為∠ABD=45°,∠ACD=28°.求電子警察安裝在懸臂燈桿上的高度AD的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin28°=0.47,cos28°=0.88,tan28°=0.53)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數(shù) | 1 | 3 | 0 | 2 | 3 | 4 | 2 | 1 | 1 | 3 |
根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )
A. 60枚 B. 50枚 C. 40枚 D. 30枚
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店經(jīng)市場調(diào)查,發(fā)現(xiàn)進價為40元的某新型文具每月的銷售量y(件)與售價x(元)的相關(guān)信息如下:
售價x(元) | 60 | 70 | 80 | 90 | … |
銷售量y(件) | 280 | 260 | 240 | 220 | … |
(1)試用你學過的函數(shù)來描述y與x的關(guān)系,這個函數(shù)可以是 (填“一次函數(shù)”、“反比例函數(shù)”或“二次函數(shù)”),并求這個函數(shù)關(guān)系式;
(2)當售價為多少元時,當月的銷售利潤最大,最大利潤是多少;
(3)若獲利不得高于進價的80%,那么售價定為多少元時,月銷售利潤達到最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,是矩形的邊上的一點,AC是其對角線,連接AE,過點E作交于點, 交DC于點F,過點B作于點G,交AE于點H.
(1)求證:∽;
(2)求證:;
(3)若E是BC的中點,,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應“綠水青山就是金山銀山”的號召,建設(shè)生態(tài)文明,某工廠自2019年1月開始限產(chǎn)并進行治污改造,其月利潤(萬元)與月份之間的變化如圖所示,治污完成前是反比例函數(shù)圖象的一部分,治污完成后是一次函數(shù)圖象的部分,下列選項錯誤的是( )
A.4月份的利潤為萬元
B.污改造完成后每月利潤比前一個月增加萬元
C.治污改造完成前后共有個月的利潤低于萬元
D.9月份該廠利潤達到萬元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某化工材料經(jīng)銷商購進一種化工材料若干千克,成本為每千克30元,物價部門規(guī)定其銷售單價不低于成本價且不高于成本價的2倍,經(jīng)試銷發(fā)現(xiàn),日銷售量(千克)與銷售單價(元)符合一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若在銷售過程中每天還要支付其他費用500元,當銷售單價為多少時,該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴頭,使噴出的拋物線形水柱在與水池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離中心3m.
(1)在給定的坐標系中畫出示意圖;
(2)求出水管的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com