【題目】如圖,直線與雙曲線交于兩點,與軸交于點,已知點的坐標為,點坐標為。

1)求函數(shù)的表達式和點坐標;

2)觀察圖像,當時,直接寫出的取值范圍。

【答案】1y1=-x+3,B1,2);(20<x<1x>2

【解析】

1)先把A21),C03)代入,利用待定系數(shù)法可確定函數(shù)y1的表達式,再確定反比例函數(shù)解析式,然后解由兩解析式所組成的方程組可確定B點坐標;

2)由可判斷出,一次函數(shù)圖象應在反比例函數(shù)圖象下方,再觀察函數(shù)圖象可得到取值范圍.

解:(1)將A2,1)、C0,3)代入,解得,

A2,1)代入,

解方程組,得

B1,2);

2)由圖象可得,當時,一次函數(shù)圖象在反比例函數(shù)圖象下方,

∴當時,的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一輛轎車在經(jīng)過某路口的感應線BC處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應線之間距離BC6.2m,在感應線B、C兩處測得電子警察A的仰角分別為∠ABD45°,∠ACD28°.求電子警察安裝在懸臂燈桿上的高度AD的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin28°0.47,cos28°0.88,tan28°0.53

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

次數(shù)

1

2

3

4

5

6

7

8

9

10

黑棋數(shù)

1

3

0

2

3

4

2

1

1

3

根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )

A. 60 B. 50 C. 40 D. 30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店經(jīng)市場調(diào)查,發(fā)現(xiàn)進價為40元的某新型文具每月的銷售量y(件)與售價x(元)的相關(guān)信息如下:

售價x(元)

60

70

80

90

銷售量y(件)

280

260

240

220

1)試用你學過的函數(shù)來描述yx的關(guān)系,這個函數(shù)可以是   (填一次函數(shù)、反比例函數(shù)二次函數(shù)),并求這個函數(shù)關(guān)系式;

2)當售價為多少元時,當月的銷售利潤最大,最大利潤是多少;

3)若獲利不得高于進價的80%,那么售價定為多少元時,月銷售利潤達到最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,是矩形的邊上的一點,AC是其對角線,連接AE,過點E于點, DC于點F,過點B于點G,AE于點H

1)求證:;

2)求證:;

3)若EBC的中點,,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應綠水青山就是金山銀山的號召,建設(shè)生態(tài)文明,某工廠自20191月開始限產(chǎn)并進行治污改造,其月利潤(萬元)與月份之間的變化如圖所示,治污完成前是反比例函數(shù)圖象的一部分,治污完成后是一次函數(shù)圖象的部分,下列選項錯誤的是(

A.4月份的利潤為萬元

B.污改造完成后每月利潤比前一個月增加萬元

C.治污改造完成前后共有個月的利潤低于萬元

D.9月份該廠利潤達到萬元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某化工材料經(jīng)銷商購進一種化工材料若干千克,成本為每千克30元,物價部門規(guī)定其銷售單價不低于成本價且不高于成本價的2倍,經(jīng)試銷發(fā)現(xiàn),日銷售量(千克)與銷售單價(元)符合一次函數(shù)關(guān)系,如圖所示.

1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)若在銷售過程中每天還要支付其他費用500元,當銷售單價為多少時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴頭,使噴出的拋物線形水柱在與水池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離中心3m

1)在給定的坐標系中畫出示意圖;

2)求出水管的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

同步練習冊答案