【題目】如圖,若b是正數(shù),直線l:y=b與y軸交于點(diǎn)A;直線a:y=x﹣b與y軸交于點(diǎn)B;拋物線L:y=﹣x2+bx的頂點(diǎn)為C,且L與x軸右交點(diǎn)為D.
(1)若AB=8,求b的值,并求此時(shí)L的對(duì)稱軸與a的交點(diǎn)坐標(biāo);
(2)當(dāng)點(diǎn)C在l下方時(shí),求點(diǎn)C與l距離的最大值;
(3)設(shè)x0≠0,點(diǎn)(x0,y1),(x0,y2),(x0,y3)分別在l,a和L上,且y3是y1,y2的平均數(shù),求點(diǎn)(x0,0)與點(diǎn)D間的距離;
(4)在L和a所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“美點(diǎn)”,分別直接寫出b=2019和b=2019.5時(shí)“美點(diǎn)”的個(gè)數(shù).
【答案】(1)b=4,(2,﹣2 );(2)1;(3);(4)當(dāng)b=2019時(shí)“美點(diǎn)”的個(gè)數(shù)為4040個(gè),b=2019.5時(shí)“美點(diǎn)”的個(gè)數(shù)為1010個(gè).
【解析】
(1)求出A、B 的坐標(biāo),由AB=8,可求出b的值.從而得到L的解析式,找出L的對(duì)稱軸與a的交點(diǎn)即可;
(2)通過配方,求出L的頂點(diǎn)坐標(biāo),由于點(diǎn)C在l下方,則C與l的距離,配方即可得出結(jié)論;
(3)由題意得y1+y2=2y3,進(jìn)而有b+x0﹣b=2(﹣x02+bx0)解得x0的值,求出L與x軸右交點(diǎn)為D的坐標(biāo),即可得出結(jié)論;
(4)①當(dāng)b=2019時(shí),拋物線解析式L:y=﹣x2+2019x直線解析式a:y=x﹣2019,美點(diǎn)”總計(jì)4040個(gè)點(diǎn),②當(dāng)b=2019.5時(shí),拋物線解析式L:y=﹣x2+2019.5x,直線解析式a:y=x﹣2019.5,“美點(diǎn)”共有1010個(gè).
(1)當(dāng)x=0吋,y=x﹣b=﹣b,∴B (0,﹣b).
∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4,∴L:y=﹣x2+4x,∴L的對(duì)稱軸x=2,當(dāng)x=2時(shí),y=x﹣4=﹣2,∴L的對(duì)稱軸與a的交點(diǎn)為(2,﹣2 );
(2)y=﹣(x)2,∴L的頂點(diǎn)C(,).
∵點(diǎn)C在l下方,∴C與l的距離b(b﹣2)2+1≤1,∴點(diǎn)C與l距離的最大值為1;
(3)∵y3是y1,y2的平均數(shù),∴y1+y2=2y3,∴b+x0﹣b=2(﹣x02+bx0),解得:x0=0或x0=b.
∵x0≠0,∴x0=b,對(duì)于L,當(dāng)y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得:x1=0,x2=b.
∵b>0,∴右交點(diǎn)D(b,0),∴點(diǎn)(x0,0)與點(diǎn)D間的距離b﹣(b).
(4)①當(dāng)b=2019時(shí),拋物線解析式L:y=﹣x2+2019x,直線解析式a:y=x﹣2019.
聯(lián)立上述兩個(gè)解析式可得:x1=﹣1,x2=2019,∴可知每一個(gè)整數(shù)x的值都對(duì)應(yīng)的一個(gè)整數(shù)y值,且﹣1和2019之間(包括﹣1和﹣2019)共有2021個(gè)整數(shù);
∵另外要知道所圍成的封閉圖形邊界分兩部分:線段和拋物線,∴線段和拋物線上各有2021個(gè)整數(shù)點(diǎn),∴總計(jì)4042個(gè)點(diǎn).
∵這兩段圖象交點(diǎn)有2個(gè)點(diǎn)重復(fù),∴美點(diǎn)”的個(gè)數(shù):4042﹣2=4040(個(gè));
②當(dāng)b=2019.5時(shí),拋物線解析式L:y=﹣x2+2019.5x,直線解析式a:y=x﹣2019.5,聯(lián)立上述兩個(gè)解析式可得:x1=﹣1,x2=2019.5,∴當(dāng)x取整數(shù)時(shí),在一次函數(shù)y=x﹣2019.5上,y取不到整數(shù)值,因此在該圖象上“美點(diǎn)”為0,在二次函數(shù)y=x2+2019.5x圖象上,當(dāng)x為偶數(shù)時(shí),函數(shù)值y可取整數(shù),可知﹣1到2019.5之 間有1010個(gè)偶數(shù),因此“美點(diǎn)”共有1010個(gè).
故b=2019時(shí)“美點(diǎn)”的個(gè)數(shù)為4040個(gè),b=2019.5時(shí)“美點(diǎn)”的個(gè)數(shù)為1010個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以半圓中的一條弦BC(非直徑)為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若=,且AB=10,則CB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為5的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.
(1)當(dāng)BC=6時(shí),求線段OD的長(zhǎng);
(2)在△DOE中是否存在長(zhǎng)度保持不變的邊?如果存在,請(qǐng)指出并求其長(zhǎng)度;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個(gè)填寫運(yùn)算符號(hào)的游戲:在“”中的每個(gè)□內(nèi),填入中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.
(1)計(jì)算:;
(2)若請(qǐng)推算□內(nèi)的符號(hào);
(3)在“”的□內(nèi)填入符號(hào)后,使計(jì)算所得數(shù)最小,直接寫出這個(gè)最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸正半軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn).
(1)若是等腰直角三角形,且其腰長(zhǎng)為3,求拋物線的解析式;
(2)在(1)的條件下,點(diǎn)為拋物線對(duì)稱軸上的一點(diǎn),求的最小值
(3)連接,在直線下方的拋物線上,是否存在點(diǎn),使的面積最大,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)過點(diǎn)B作BC⊥x軸,垂足為C,連接AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:“如圖,ABCD的對(duì)角線相交于點(diǎn)O,過點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,請(qǐng)根據(jù)上述條件,寫出一個(gè)正確結(jié)論”其中四位同學(xué)寫出的結(jié)論如下:
小青:;小何:四邊形DFBE是正方形;
小夏:;小雨:.
這四位同學(xué)寫出的結(jié)論中不正確的是
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com