(已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與點C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,分別連結(jié)AF和CE。
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長;
(3)在線段AC上是否存在一點P,使得2AE2=AC·AP?若存在,請說明點P的位置,并予以證明;若不存在,請說明理由。
(1)見解析;(2)24cm;(3)存在,過E作EP⊥AD交AC于P,則P就是所求的點,證明見解析.
解析試題分析:(1)由四邊形ABCD是矩形與折疊的性質(zhì),易證得△AOE≌△COF,即可得AE=CF,則可證得四邊形AFCE是平行四邊形,又由AC⊥EF,則可證得四邊形AFCE是菱形;
由已知可得:S△ABF=AB•BF=24cm2,則可得AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),則可求得AB+BF的值,繼而求得△ABF的周長.
過E作EP⊥AD交AC于P,則P就是所求的點,首先證明四邊形AFCE是菱形,然后根據(jù)題干條件證明△AOE∽△AEP,列出關(guān)系式.
試題解析:
(1)∵四邊形ABCD是矩形,
∴AD∥BC,∴∠EAO=∠FCO,
由折疊的性質(zhì)可得:OA=OC,AC⊥EF,
在△AOE和△COF中,
∵ ,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四邊形AFCE是平行四邊形,
∵AC⊥EF,
∴四邊形AFCE是菱形;
(2)∵四邊形AFCE是菱形,
∴AF=AE=10cm,
∵四邊形ABCD是矩形,
∴∠B=90°,
∴S△ABF=AB•BF=24cm2,
∴AB•BF=48(cm2),
∴AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),
∴AB+BF=14(cm)
∴△ABF的周長為:AB+BF+AF=14+10=24(cm).
(3)證明:過E作EP⊥AD交AC于P,則P就是所求的點.
當頂點A與C重合時,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵在平行四邊形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
∴△AOE≌△COF,
∴OE=OF
∴四邊形AFCE是菱形.
∴∠AOE=90°,又∠EAO=∠EAP,
由作法得∠AEP=90°,
∴△AOE∽△AEP,
∴,則AE2=A0•AP,
∵四邊形AFCE是菱形,
∴AO=AC,
∴AE2=AC•AP,
∴2AE2=AC•AP.
考點:1.翻折變換(折疊問題);2.菱形的判定;3.矩形的性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
已知∠AOB=90°,OM是∠AOB的平分線,按以下要求解答問題:
(1)如圖1,將三角板的直角頂點P在射線OM上移動,兩直角邊分別與OA,OB交于點C,D.
①比較大小:PC______PD. (選擇“>”或“<”或“=”填空);
②證明①中的結(jié)論.
(2)將三角板的直角頂點P在射線OM上移動,一直角邊與邊OA交于點C,且OC=1,另一直角邊與直線OB,直線OA分別交于點D,E,當以P,C,E為頂點的三角形與△OCD相似時,試求的長.(提示:請先在備用圖中畫出相應(yīng)的圖形,再求的長).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角頂點P在AD上滑動時(點P與A、D不重合),一直角邊始終經(jīng)過點C,另一直角邊與AB交于點E.
(1)證明△DPC∽△AEP;
(2)當∠CPD=30°時,求AE的長;
(3)是否存在這樣的點P,使△DPC的周長等于△AEP周長的倍?若存在,求出DP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直角△ABC中,∠C=90°,AB=2,sinB=,點P為邊BC上一動點,PD∥AB,PD交AC于點D,連結(jié)AP.
(1)求、的長;
(2)設(shè)的長為,的面積為.當為何值時,最大并求出最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示,將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示,觀察圖2可知:與BC相等的線段是______,∠CAC′=______°。
問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.,
拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H,若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△A'B'C'是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點O;
(2)直接寫出△ABC與△A′B′C′的位似比;
(3)以位似中心O為坐標原點,以格線所在直線為坐標軸建立平面直角坐標系,畫出△A′B′C′關(guān)于點O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0).將矩形OABC繞點O按順時針方向旋轉(zhuǎn)135º,得到矩形EFGH(點E與O重合).
(1)若GH交y軸于點M,則∠FOM= ,OM= .
(2)將矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個平方單位,試求當0<t≤4-2時,S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,矩形AOBC的邊長為AO=6,AC=8,
(1)如圖①,E是OB的中點,將△AOE沿AE折疊后得到△AFE,點F在矩形AOBC內(nèi)部,延長AF交BC于點G.求點G的坐標;
(2)定義:若以不在同一直線上的三點中的一點為圓心的圓恰好過另外兩個點,這樣的圓叫做黃金圓.如圖②,動點P以每秒2個單位的速度由點C向點A沿線段CA運動,同時點Q以每秒4個單位的速度由點O向點C沿線段OC運動;求:當 PQC三點恰好構(gòu)成黃金圓時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com