【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形BCE,連接AE,DE

1)求證:AEDE

2)過(guò)點(diǎn)DDFAE,垂足為F,若AB2cm,求DF的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)

【解析】

1)證明△ABE≌△DCE,可得結(jié)論;

2)作輔助線,構(gòu)建直角三角形,根據(jù)等腰三角形的性質(zhì)得∠BCG30°,∠DEF30°,利用正方形的邊長(zhǎng)計(jì)算DE的長(zhǎng),從而得DF的長(zhǎng).

1)證明:∵四邊形ABCD是正方形,

ABCD,∠ABC=∠DCB90°

∵△BCE是等邊三角形,

BECE,∠EBC=∠ECB60°,

即∠ABE=∠DCE150°,

∴△ABE≌△DCE,

AEDE;

2)解:過(guò)點(diǎn)EEGCDG,

DCCE,∠DCE150°,

∴∠CDE=∠CED15°

∴∠ECG30°,

CBCDAB2

EG1,CG,

RtDGE中,DE

RtDEF中,∠EDA=∠DAE90°15°75°

∴∠DEF30°,

DFDEcm).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值是1,n是有理數(shù)且既不是正數(shù)也不是負(fù)數(shù),求20161a+b+m﹣(cd)2016+n(a+b+c+d)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型商業(yè)中心開(kāi)業(yè),為吸引顧客,特在一指定區(qū)域放置一批按摩休閑椅,供顧客有償體驗(yàn),收費(fèi)如下圖:

1)若在此按摩椅上連續(xù)休息了1小時(shí),需要支付多少元?

2)某人在該椅上一次性消費(fèi)18元,那么他在該椅子上最多休息了多久?

3)張先生到該商場(chǎng)會(huì)見(jiàn)一名客人,結(jié)果客人告知臨時(shí)有事,預(yù)計(jì)4.5小時(shí)后才能到來(lái);那么如果張先生要在該休閑椅上休息直至客人到來(lái),他至少需要支付多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)Bx軸的正半軸上.∠OAB90°OAAB,OB,OC的長(zhǎng)分別是二元一次方程組的解(OBOC).

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)OB重合),過(guò)點(diǎn)P的直線ly軸平行,直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長(zhǎng)度為m.已知t4時(shí),直線l恰好過(guò)點(diǎn)C

①當(dāng)0t3時(shí),求m關(guān)于t的函數(shù)關(guān)系式;

②當(dāng)m時(shí),求點(diǎn)P的橫坐標(biāo)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張先生今年7月份第一個(gè)星期的星期五以每股(份)25元的價(jià)格買進(jìn)某種金融理財(cái)產(chǎn)品共2000股(買入時(shí)免收手續(xù)費(fèi)),該理財(cái)產(chǎn)品在第二個(gè)星期的五個(gè)交易日中,每股的漲跌情況如下表(表格中數(shù)據(jù)表示比前一交易日漲或跌多少元) (單位:元):

星期

每股漲跌額

(1)寫出第二個(gè)星期每日每股理財(cái)產(chǎn)品的收盤價(jià)(即每日最后時(shí)刻的成交價(jià));

(2)已知理財(cái)產(chǎn)品賣出時(shí),交易所需收取千分之三的手續(xù)費(fèi),如果張先生在第二個(gè)星期的星期五交易結(jié)束前將全部產(chǎn)品賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:如圖①,在平面直角坐標(biāo)系中,AB兩點(diǎn)的坐標(biāo)分別為A(x1,y1)B(x2,y2)AB的中點(diǎn)P的坐標(biāo)為(xp,yp).由xpx1x2xp,得xp,同理得yp,所以AB的中點(diǎn)坐標(biāo)為P(,).由勾股定理得AB2|x2x1|2|y2y1|2,所以A,B兩點(diǎn)間的距離公式為AB.

注:上述公式對(duì)A,B在平面直角坐標(biāo)系中其他位置也成立.

解答下列問(wèn)題:

如圖②,拋物線yax2bx3(a≠0)x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且BOOC3AO,連接BC.

(1)求拋物線的表達(dá)式;

(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使PBC是等腰三角形?若存在,試求出符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;

(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);

(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段ABCD的中點(diǎn)E,F之間距離是10cm,ABCD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(2,1),B(﹣1,﹣3).

(1)求此一次函數(shù)的解析式;

(2)求此一次函數(shù)的圖象與x軸、y軸的交點(diǎn)坐標(biāo);

(3)求此一次函數(shù)的圖象與兩坐標(biāo)軸所圍成的三角形面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案