【題目】已知二次函數(shù)yx2+bx+cbc為常數(shù)).

(Ⅰ)當b2,c=﹣3時,求二次函數(shù)的最小值;

(Ⅱ)當c5時,若在函數(shù)值y1的情況下,只有一個自變量x的值與其對應(yīng),求此時二次函數(shù)的解析式;

(Ⅲ)當c5時,在自變量x的值滿足1x3的情況下,與其對應(yīng)的函數(shù)值y的最小值為﹣5,求b的值

【答案】(Ⅰ)-4;(Ⅱ)yx2+4x+5yx24x+5;(Ⅲ)

【解析】

(Ⅰ)利用配方法得到y=(x+124,然后根據(jù)二次函數(shù)的性質(zhì)解決問題;

(Ⅱ)二次函數(shù)解析式為yx2+bx+5,把問題轉(zhuǎn)化為x2+bx+51有兩個相等的實數(shù)解,然后根據(jù)判別式的意義確定b的值,從而得到此時二次函數(shù)的解析式;

(Ⅲ)利用配方法得到y=(x+2+5,則拋物線的對稱軸為直線x=﹣,討論:若﹣≤1,根據(jù)二次函數(shù)的性質(zhì)得到x1時,y=﹣5,把這組對應(yīng)值代入解析式求得的b不滿足條件;若1<﹣3,利用二次函數(shù)的性質(zhì)當x=﹣5=﹣5,求得的b不滿足條件;若﹣≥3,解得b≤6,利用二次函數(shù)的性質(zhì)得到x3時,y=﹣5,把這組對應(yīng)值代入解析式可求出b的值.

解:(Ⅰ)當b2,c=﹣3時,二次函數(shù)解析式為yx2+2x3,

y=(x+124,

∴當x=﹣1時,y有最小值﹣4;

(Ⅱ)當c5時,二次函數(shù)解析式為yx2+bx+5,

∵在函數(shù)值y1的情況下,只有一個自變量x的值與其對應(yīng),

x2+bx+51有兩個相等的實數(shù)解,

方程整理為x2+bx+40,

∵△=b24×40,解得b4或﹣4,

∴此時二次函數(shù)的解析式為yx2+4x+5yx24x+5;

(Ⅲ)當c5時,二次函數(shù)解析式為yx2+bx+5,

y=(x+2+5

∴拋物線的對稱軸為直線x=﹣,

若﹣≤1,解得b≥2,在1≤x≤3范圍內(nèi)yx的增大而增大,則x1時,y=﹣5

1+b+5=﹣5,解得b=﹣11(舍去);

1<﹣3,即﹣6b<﹣2,在1≤x≤3范圍內(nèi),當x=﹣y有最小值﹣5,即5=﹣5,解得b=﹣2(舍去)或b2(舍去);

若﹣≥3,解得b≤6,在1≤x≤3范圍內(nèi)yx的增大而減下,則x3時,y=﹣5

9+3b+5=﹣5,解得b=﹣

綜上所述,b的值為﹣.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】從共享單車、共享汽車等共享出行到共享充電寶、共享雨傘等共享物品,各式各樣的共享經(jīng)濟模式在各個領(lǐng)域迅速普及應(yīng)用,越來越多的企業(yè)與個人成為參與者與受益者,小宇上網(wǎng)查閱了相關(guān)資料,順便收集到四個共享經(jīng)濟領(lǐng)域的圖標,并將其制成編號為AB,CD的四張卡片(除編號和內(nèi)容外,其余完全相同),將這四張卡片背面朝上,洗勻放好.

1)從中隨機抽取一張,求剛好抽到“共享服務(wù)”的概率.

2)從中隨機抽取一張(不放回),再從中隨機抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號A,B,C,D表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測角器的高度忽略不計,結(jié)果精確到0.1.參考數(shù)據(jù):1.4141.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“圓材埋壁”是我國古代著名的數(shù)學著作《九章算術(shù)》中的一個問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問鋸幾何?”用現(xiàn)代的數(shù)學語言表述是:“如圖,CD為O的直徑,弦ABCD垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意,CD長為(

A.12寸 B.13寸 C.24寸 D.26寸

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+cx軸交于AB兩點(A在點B的左側(cè)),且A(10),B(4,0),與y軸交于點C,C點的坐標為(0,﹣2),連接BC,以BC為邊,點O為對稱中心作菱形BDEC.Px軸上的一個動點,設(shè)點P的坐標為(m,0),過點Px軸的垂線交拋物線于點Q,交BD于點M.

(1)求拋物線的解析式.

(2)x軸上是否存在一點P,使三角形PBC為等腰三角形,若存在,請直接寫出點P的坐標;若不存在,請說明理由.

(3)當點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線S1x軸交于點A(﹣3,0),B1,0),將它向右平移2個單位得新拋物線S2,點M,N是拋物線S2上兩點,且MNx軸,交拋物線S1于點C,已知MN3MC,則點C的橫坐標為( 。

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學綜合實踐活動中,同學們測量了學校教學樓的高度.如圖,CD是高為2m的平臺,在D處測得樓頂B的仰角為45°,從平臺底部向教學樓方向前進4m到達E處,測得樓頂B的仰角為60°.求教學樓AB的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙C的半徑為r,給出如下定義:若點P的橫、縱坐標均為整數(shù),且到圓心C的距離dr,則稱P為⊙C 的關(guān)聯(lián)整點.

1)當⊙O的半徑r=2時,在點D2-2),E-1,0),F0,2)中,為⊙O的關(guān)聯(lián)整點的是 ;

2)若直線上存在⊙O的關(guān)聯(lián)整點,且不超過7個,求r的取值范圍;

3)⊙C的圓心在x軸上,半徑為2,若直線上存在⊙C的關(guān)聯(lián)整點,求圓心C的橫坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一副三角板按如圖放置,其中ABC=DEB=90°A=45°,D=30°,斜邊AC=BD=10,若將三角板DEB繞點B逆時針旋轉(zhuǎn)45°得到DEB,則點A在DEB的(

A.內(nèi)部 B.外部 C.邊上 D.以上都有可能

查看答案和解析>>

同步練習冊答案