【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.

(1)求證:
(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時(shí),它的對(duì)邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個(gè)比值記作T(A),即T(A)= 的對(duì)邊(底邊)/的領(lǐng)邊(腰)= ,如T(60°)=1.
①理解鞏固:T(90°)= , T(120°)= , 若α是等腰三角形的頂角,則T(α)的取值范圍是;
②學(xué)以致用:如圖2,圓錐的母線長(zhǎng)為9,底面直徑PQ=8,一只螞蟻從點(diǎn)P沿著圓錐的側(cè)面爬行到點(diǎn)Q,求螞蟻爬行的最短路徑長(zhǎng)(精確到0.1).
(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)

【答案】
(1)

證明:∵AB=AC,DE=DF,

,

又∵∠A=∠D,

∴△ABC∽△DEF,


(2);;0<T(α)<2
【解析】(2)①如圖1,

∠A=90°,AB=AC,
= ,
∴T(90°)= ,
如圖2,

∠A=90°,AB=AC,
作AD⊥BC于D,
則∠B=60°,
∴BD= AB,
∴BC= AB,
∴T(120°)= ;
∵AB﹣AC<BC<AB+AC,
∴0<T(α)<2,
所以答案是: ; ;0<T(α)<2;
②∵圓錐的底面直徑PQ=8,
∴圓錐的底面周長(zhǎng)為8π,即側(cè)面展開(kāi)圖扇形的弧長(zhǎng)為8π,
設(shè)扇形的圓心角為n°,
=8π,
解得,n=160,
∵T(160°)≈1.97,
∴螞蟻爬行的最短路徑長(zhǎng)為1.97×9≈17.7.
【考點(diǎn)精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點(diǎn)O,OC=1,以點(diǎn)O為圓心OC為半徑作半圓.

(1)求證:AB為⊙O的切線;
(2)如果tan∠CAO= ,求cosB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點(diǎn)D,交OB于點(diǎn)C,連接CD交直線OA于點(diǎn)E,若∠B=30°,則線段AE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線m:y=ax2﹣6ax+c(a>0)的頂點(diǎn)A在x軸上,并過(guò)點(diǎn)B(0,1),直線n:y=﹣ x+ 與x軸交于點(diǎn)D,與拋物線m的對(duì)稱(chēng)軸l交于點(diǎn)F,過(guò)B點(diǎn)的直線BE與直線n相交于點(diǎn)E(﹣7,7).

(1)求拋物線m的解析式;
(2)P是l上的一個(gè)動(dòng)點(diǎn),若以B,E,P為頂點(diǎn)的三角形的周長(zhǎng)最小,求點(diǎn)P的坐標(biāo);
(3)拋物線m上是否存在一動(dòng)點(diǎn)Q,使以線段FQ為直徑的圓恰好經(jīng)過(guò)點(diǎn)D?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E為AD的中點(diǎn),若OE=3,則菱形ABCD的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(﹣ 2 +6cos30°;
(2)先化簡(jiǎn),再求值:(a+b)(a﹣b)﹣(a﹣2b)2 , 其中a=2,b=﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是
(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P,Q是直線l上的兩個(gè)動(dòng)點(diǎn),且點(diǎn)P在第二象限,點(diǎn)Q在第四象限,∠POQ=135°.

(1)求△AOB的周長(zhǎng);
(2)設(shè)AQ=t>0,試用含t的代數(shù)式表示點(diǎn)P的坐標(biāo);
(3)當(dāng)動(dòng)點(diǎn)P,Q在直線l上運(yùn)動(dòng)到使得△AOQ與△BPO的周長(zhǎng)相等時(shí),記tan∠AOQ=m,若過(guò)點(diǎn)A的二次函數(shù)y=ax2+bx+c同時(shí)滿足以下兩個(gè)條件:
①6a+3b+2c=0;
②當(dāng)m≤x≤m+2時(shí),函數(shù)y的最大值等于 ,求二次項(xiàng)系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接建黨90周年,某校組織了以“黨在我心中”為主題的電子小報(bào)制作比賽,評(píng)分結(jié)果只有60,70,80,90,100五種.現(xiàn)從中隨機(jī)抽取部分作品,對(duì)其份數(shù)及成績(jī)進(jìn)行整理,制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)求本次抽取了多少份作品,并補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)已知該校收到參賽作品共900份,請(qǐng)估計(jì)該校學(xué)生比賽成績(jī)達(dá)到90分以上(含90分)的作品有多少份?

查看答案和解析>>

同步練習(xí)冊(cè)答案