【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是
(2)若從報名的4名教師中隨機(jī)選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學(xué)校的概率.

【答案】
(1)
(2)

解:將甲、乙兩校報名的教師分別記為甲1、甲2、乙1、乙2(注:1表示男教師,2表示女教師),樹狀圖如圖所示:

所以P(兩名教師來自同一所學(xué)校)= =


【解析】解:(1)根據(jù)題意畫圖如下:

共有4種情況,其中所選的2名教師性別相同的有2種,
則所選的2名教師性別相同的概率是 =
故答案為: ;
(1)根據(jù)甲、乙兩校分別有一男一女,列出樹狀圖,得出所有情況,再根據(jù)概率公式即可得出答案;(2)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.本題考查列表法和樹狀圖法,注意結(jié)合題意中“寫出所有可能的結(jié)果”的要求,使用列舉法,注意按一定的順序列舉,做到不重不漏.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣ ),頂點(diǎn)為D,對稱軸與x軸交于點(diǎn)H,過點(diǎn)H的直線l交拋物線于P,Q兩點(diǎn),點(diǎn)Q在y軸的右側(cè).

(1)求a的值及點(diǎn)A,B的坐標(biāo);
(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時,求直線l的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P位于第二象限時,設(shè)PQ的中點(diǎn)為M,點(diǎn)N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點(diǎn)N的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請你添加一個適當(dāng)?shù)臈l件: , 使△AEH≌△CEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.

(1)求證: ;
(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時,它的對邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個比值記作T(A),即T(A)= 的對邊(底邊)/的領(lǐng)邊(腰)= ,如T(60°)=1.
①理解鞏固:T(90°)= , T(120°)= , 若α是等腰三角形的頂角,則T(α)的取值范圍是
②學(xué)以致用:如圖2,圓錐的母線長為9,底面直徑PQ=8,一只螞蟻從點(diǎn)P沿著圓錐的側(cè)面爬行到點(diǎn)Q,求螞蟻爬行的最短路徑長(精確到0.1).
(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,分別以直角三角形三邊為邊向外作等邊三角形,面積分別為S1、S2、S3;如圖2,分別以直角三角形三個頂點(diǎn)為圓心,三邊長為半徑向外作圓心角相等的扇形,面積分別為S4、S5、S6 . 其中S1=16,S2=45,S5=11,S6=14,則S3+S4=( 。
A.86
B.64
C.54
D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx經(jīng)過兩點(diǎn)A(﹣1,1),B(2,2).過點(diǎn)B作BC∥x軸,交拋物線于點(diǎn)C,交y軸于點(diǎn)D.

(1)求此拋物線對應(yīng)的函數(shù)表達(dá)式及點(diǎn)C的坐標(biāo);
(2)若拋物線上存在點(diǎn)M,使得△BCM的面積為 ,求出點(diǎn)M的坐標(biāo);
(3)連接OA、OB、OC、AC,在坐標(biāo)平面內(nèi),求使得△AOC與△OBN相似(邊OA與邊OB對應(yīng))的點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是ABCD的對角線,∠BAC=∠DAC.

(1)求證:AB=BC;
(2)若AB=2,AC=2 ,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)分別為A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y軸上有一點(diǎn)P(0,2).作點(diǎn)P關(guān)于點(diǎn)A的對稱點(diǎn)P1 , 作P1關(guān)于點(diǎn)B的對稱點(diǎn)P2 , 作點(diǎn)P2關(guān)于點(diǎn)C的對稱點(diǎn)P3 , 作P3關(guān)于點(diǎn)D的對稱點(diǎn)P4 , 作點(diǎn)P4關(guān)于點(diǎn)A的對稱點(diǎn)P5 , 作P5關(guān)于點(diǎn)B的對稱點(diǎn)P6┅,按如此操作下去,則點(diǎn)P2011的坐標(biāo)為(
A.(0,2)
B.(2,0)
C.(0,﹣2)
D.(﹣2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為確保信息安全,在傳輸時往往需加密,發(fā)送方發(fā)出一組密碼a,bc時,則接收方對應(yīng)收到的密碼為A,B,C.雙方約定:A=2a﹣b,B=2b,C=b+c,例如發(fā)出1,2,3,則收到0,45

1)當(dāng)發(fā)送方發(fā)出一組密碼為2,3,5時,則接收方收到的密碼是多少?

2)當(dāng)接收方收到一組密碼2,8,11時,則發(fā)送方發(fā)出的密碼是多少?

查看答案和解析>>

同步練習(xí)冊答案