【題目】一種商品的標(biāo)準(zhǔn)價格是200元,但隨著季節(jié)的變化,商品的價格可浮動,想一想.

的含義是什么?

請你計算出該商品的最高價格和最低價格;

如果以標(biāo)準(zhǔn)價為標(biāo)準(zhǔn),超過標(biāo)準(zhǔn)價記“”,低于標(biāo)準(zhǔn)價記“”,該商品價格的浮動范圍又可以怎樣表示?

【答案】表示比標(biāo)準(zhǔn)高,表示比標(biāo)準(zhǔn)價低;元,元;元.

【解析】在一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負(fù)表示;

(1)根據(jù)題意可知可以上漲,也可能下調(diào),據(jù)此解答即可;

(2)根據(jù)給出的條件列式計算即可解答;

(3)根據(jù)題意,求出商品價格的浮動范圍.

1)±10%的含義是:在標(biāo)準(zhǔn)價的基礎(chǔ)上,加價和降價的幅度不超過10%;

(2)最高價為:200+200×10%=220(元)最低價為:200×(110%)=180(元);

答:該商品的最高價格是220元,最低價格是180元;

(3)因為220200=20(元),200180=20(元),

所以這件商品加價和降價的幅度不超過20元,

所以,這件商品價格的浮動范圍又可以表示為±20元;

答:該商品價格的浮動范圍為±20元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A第,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

(1)A、B兩地之間的距離: km;

(2)甲的速度為 km/h;乙的速度為30km/h;

(3)點M的坐標(biāo)為

(4)求:甲離B地的距離y(km)與行駛時間x(h)之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結(jié)論的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系xOy(如圖),直線 y=x+b經(jīng)過第一、二、三象限,與y軸交于點B,點A(2,t)在直線y=x+b上,連結(jié)AO,△AOB的面積等于1.

(1)求b的值;

(2)如果反比例函數(shù)y= (k是常量,k≠0)的圖象經(jīng)過點A,求這個反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行了一次體育科目測試(把成績結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學(xué)生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點D在反比例函數(shù)y= 的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=

(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;
(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A為函數(shù)y= (x>0)圖象上一點,連結(jié)OA,交函數(shù)y= (x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab,c分別是ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2,ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

【答案】B

【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c24a4-4a2c2+c4+4b4-4b2c2+c4=0,

2a2-c22+2b2-c22=0,2a2-c2=0,2b2-c2=0,

c=2a,c=2b,

a=b,且a2+b2=c2,

∴△ABC為等腰直角三角形.

故選B.

型】單選題
結(jié)束】
11

【題目】將圖1中陰影部分的小長方形變換到圖2的位置,你能根據(jù)兩個圖形的面積關(guān)系得到的數(shù)學(xué)公式是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以菱形ABCD對角線交點為坐標(biāo)原點,建立平面直角坐標(biāo)系,A、B兩點的坐標(biāo)分別為(﹣2 ,0)、(0,﹣ ),直線DE⊥DC交AC于E,動點P從點A出發(fā),以每秒2個單位的速度沿著A→D→C的路線向終點C勻速運動,設(shè)△PDE的面積為S(S≠0),點P的運動時間為t秒.

(1)求直線DE的解析式;
(2)求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,∠EPD+∠DCB=90°?并求出此時直線BP與直線AC所夾銳角的正切值.

查看答案和解析>>

同步練習(xí)冊答案