【題目】綜合與探究:如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C (2,3)兩點,與y軸交于點N,其頂點為D 。
(1)確定拋物線及直線AC的函數(shù)關系式;
(2)點M在直線x =3上,求使 MN+MD 的值最小時的M點坐標;
(3)若拋物線的對稱軸與直線AC 相交于點B,E 為直線AC 上的任意一點,過點E 作EF∥BD 交拋物線于點F,以B、D、E、F 為頂點的四邊形能否為平行四邊形?若能,求點E 的坐標;若不能,請說明理由。
【答案】(1)y=-x2+2x+3,直線AC為y=x+1.(2)M(3,);(3)E(0,1)或(,)或(,).
【解析】
試題分析:(1)將點A、C的坐標代入拋物線解析式可得出b、c的值,繼而得出拋物線解析式,利用待定系數(shù)法可求出AC的函數(shù)解析式;
(2)利用軸對稱求最短路徑的知識,找到N點關于直線x=3的對稱點N′,連接N'D,N'D與直線x=3的交點即是點M的位置,繼而求出m的值.
(3)設出點E的坐標,分情況討論,①當點E在線段AC上時,點F在點E上方,②當點E在線段AC(或CA)延長線上時,點F在點E下方,根據(jù)平行四邊形的性質(zhì)表示出F的坐標,將點F的坐標代入拋物線解析式可得出x的值,繼而求出點E的坐標.
試題解析:(1)由拋物線y=-x2+bx+c過點A(-1,0)及C(2,3),可得:
,解得:,
故拋物線為y=-x2+2x+3,
設直線AC解析式為y=kx+n,將點A(-1,0)、C(2,3)代入得:
,解得:,
故直線AC為y=x+1.
(2)作N點關于直線x=3的對稱點N′,則N′(6,3),由(1)得D(1,4),
可求出直線DN′的函數(shù)關系式為y=-x+,
當M(3,m)在直線DN′上時,MN+MD的值最小,
則m=-×3+=.
∴M(3,)
(3)由(1)、(2)得D(1,4),B(1,2)
點E在直線AC上,設E(x,x+1),
①當點E在線段AC上時,點F在點E上方,則F(x,x+3),
∵F在拋物線上,
∴x+3=-x2+2x+3
解得,x=0或x=1(舍去),
則點E的坐標為:(0,1).
②當點E在線段AC(或CA)延長線上時,點F在點E下方,則F(x,x-1),
∵點F在拋物線上,
∴x-1=-x2+2x+3,
解得x=或x=,
即點E的坐標為:(,)或(,)
綜上可得滿足條件的點E為E(0,1)或(,)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設DP=x,BM2=y,求y與x的函數(shù)關系式,并求線段BM的最小值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:“四扇紙風車”的制作
閱讀“四扇紙風車”的制作過程,解決下列問題:“四扇紙風車”是如何制作的呢?如圖1,首先,裁剪一塊邊長為12cm的正方形紙張;將花紋面朝下,使用你的尺子,畫兩條對角線(或沿其對角線對折);找到對角線的交點O,用按釘按下做個標記;在被交點O所分成的四條線段上靠近交點O的三等分點處分別做標記;如圖2,然后由正方形的每個角開始延對角線剪開,到記號處停下;這樣就有8個可折疊的角,將不相鄰的四個角(不相鄰指兩角中間隔一角)折向中心;再用鐵絲或釘子把它固定在一根木棍上就制作好了。
任務一:
(1)如圖2 是制作過程中在對角線上做好標記的示意圖,請求出正方形每個角處沿對角線剪開的長度;
(2)求出標記點E到正方形ABCD的頂點B的距離。
任務二:
若將“距交點O的處做標記”改為“距交點O的處做標記”并將不相鄰的四個角折疊、壓平,使角的頂點與交點O 重合,其余條件不變。
(1)請在圖3中,把“四扇紙風車”的示意圖補充完整,并將重疊部分圖上陰影;
(2)求出(1)中補充完整后的“四扇紙風車”示意圖中重疊部分的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com