【題目】如圖,已知正三角形ABC與正三角形CDE,若∠DBE=66°,則∠ADB度數(shù)為__________.
【答案】126°
【解析】
現(xiàn)根據(jù)正三角形ABC與正三角形CDE證出△BCE△ADC,從而得出∠ADC=∠BEC∠BED+60°;再根據(jù)三角形的內(nèi)角和得出∠BDE=114°-∠BED,再根據(jù)∠ADB=360°-∠ADC-∠BDE-∠EDC即可得出∠ADB的度數(shù)。
∵正三角形ABC與正三角形CDE
∴CD=CE,BC=AC, ∠DEC=∠EDC=∠DCE=60°
∴∠EDC-∠BCD=∠DCE-∠BCD
∴∠BCE=∠DCA
在△BCE和△ADC中;
∴△BCE△ADC ∴∠ADC=∠BEC;
∵∠BEC=∠BED+∠DEC=∠BED+60°;
∴∠ADC=∠BED+60°
在△BDE中,∠BDE=180°-∠DBE-∠BED=180°-66°-∠BED=114°-∠BED
∴∠ADB=360°-∠ADC-∠BDE-∠EDC=360°-(∠BED+60°)-(114°-∠BED)-60°=126°
故答案為:126°
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(﹣,﹣ ),且圖象與x軸的交點到原點的距離為1,則該一次函數(shù)的解析式為:_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.
①畫出△ABC向上平移6個單位得到的△A1B1C1;
②以點C為位似中心,在網(wǎng)格中畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=4-x與兩坐標軸分別相交于A、B點,點M是線段AB上任意一點(A、B兩點除外),過M分別作MC⊥OA于點C,MD⊥OB于點D。
(1)當點M在AB上運動時,四邊形OCMD的周長為________;
(2)當四邊形OCMD為正方形時,將正方形OCMD沿著x軸的正方向移動,設平移的距離為a (0<a≤4),在平移過程中:
①當平移距離a=1時, 正方形OCMD與△AOB重疊部分的面積為________;
②當平移距離a是多少時,正方形OCMD的面積被直線AB分成l:3兩個部分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:兩直線l1,l2滿足l1∥l2 ,點C,點D在直線l1上,點A,點B在直線l2上,點P是平面內(nèi)一動點,連接CP,BP,
(1)如圖 1,若點P在 l1,l2外部,則∠DCP、∠CPB、∠ABP之間滿足什么數(shù)量關系?請你證明的這個結(jié)論;
(2)如圖 2,若點P在l1,l2外部,連接AC,則∠CAB、∠ACP、∠CPB、∠ABP之間滿足什么數(shù)量關系?請你證明這個結(jié)論;(不能用三角形內(nèi)角和為 180°)
(3)若點P在 l1,l2內(nèi)部,且在AC的右側(cè),則∠ACP﹑∠ABP﹑∠CAB﹑∠CPB之間滿足什么數(shù)量關系?(不需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列因式分解的過程:
(1)x2﹣xy+4x﹣4y
=(x2﹣xy)+(4x﹣4y)(分成兩組)
=x(x﹣y)+4(x﹣y)直接提公因式)
=(x﹣y)(x+4)
(2)a2﹣b2﹣c2+2bc
=a2﹣(b2+c2﹣2bc)(分成兩組)
=a2﹣(b﹣c)2(直接運用公式)
=(a+b﹣c)(a﹣b+c)
(1)請仿照上述分解因式的方法,把下列各式分解因式:
①
②
(2)請運用上述分解因式的方法,把多項式1+x+x(1+x)+x(1+x)2+…+x(1+x)n分解因式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ 內(nèi)接于⊙O,過點B作⊙O的切線DE,F(xiàn)為射線BD上一點,連接CF
(1)求證: ;
(2)若⊙O 的直徑為5, , ,求 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com