【題目】如圖,AC是ABCD的對(duì)角線,在AD邊上取一點(diǎn)F,連接BF交AC于點(diǎn)E,并延長BF交CD的延長線于點(diǎn)G.
(1)若∠ABF=∠ACF,求證:CE2=EFEG;
(2)若DG=DC,BE=6,求EF的長.
【答案】(1)證明見解析;(2)3.
【解析】
(1)依據(jù)等量代換得到∠ECF=∠G,依據(jù)∠CEF=∠CEG,可得△ECF∽△EGC,進(jìn)而得出,即CE2=EFEG;
(2)依據(jù)AB=CD=DG,可得AB:CG=1:2,依據(jù)AB∥CG,即可得出EG=12,BG=18,再根據(jù)AB∥DG,可得,進(jìn)而得到EF=BF-BE=9-6=3.
解:(1)∵AB∥CG,
∴∠ABF=∠G,
又∵∠ABF=∠ACF,
∴∠ECF=∠G,
又∵∠CEF=∠CEG,
∴△ECF∽△EGC,
∴,即CE2=EFEG;
(2)∵平行四邊形ABCD中,AB=CD,
又∵DG=DC,
∴AB=CD=DG,
∴AB:CG=1:2,
∵AB∥CG,
∴,
即,
∴EG=12,BG=18,
∵AB∥DG,
∴,
∴BF=BG=9,
∴EF=BF﹣BE=9﹣6=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC邊BC的中點(diǎn),連接AD并延長到點(diǎn)E,使DE=AD,連接BE.
(1)哪兩個(gè)圖形成中心對(duì)稱?
(2)已知△ADC的面積為4,求△ABE的面積;
(3)已知AB=5,AC=3,求AD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我國的一艘海監(jiān)船在釣魚島A附近沿正東方向航行,船在B點(diǎn)時(shí)測得釣魚島A在船的北偏東60°方向,船以50海里/時(shí)的速度繼續(xù)航行2小時(shí)后到達(dá)C點(diǎn),此時(shí)釣魚島A在船的北偏東30°方向.請問船繼續(xù)航行多少海里與釣魚島A的距離最近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板如圖甲放置,其中,,,斜邊,.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖乙).這時(shí)AB與CD1相交于點(diǎn),與D1E1相交于點(diǎn)F.
(1)求的度數(shù);
(2)求線段AD1的長;
(3)若把三角形D1CE1繞著點(diǎn)順時(shí)針再旋轉(zhuǎn)30°得△D2CE2,這時(shí)點(diǎn)B在△D2CE2的內(nèi)部、外部、還是邊上?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四季水果店正準(zhǔn)備促銷廣西“脆皮桔”和山東煙臺(tái)“紅富士蘋果”,已知“脆皮桔”的進(jìn)價(jià)為12元/千克,售價(jià)為24元/千克,“紅富士蘋果”的進(jìn)價(jià)為10元/千克,售價(jià)為20元/千克,第一天該店銷售兩種水果共獲利1156元,其中“脆皮桔”的銷量比“紅富士蘋果”銷量的4倍少10千克.
(1)求第一天這兩種水果的銷量分別是多少千克?
(2)該店在第一天的售價(jià)基礎(chǔ)上銷售一段時(shí)間后,天氣突然變冷不利于“脆皮桔”的保存,為了更好的銷售這兩種水果,店主決定對(duì)“脆皮桔”在原來售價(jià)基礎(chǔ)上降價(jià)a%,銷量在原有基礎(chǔ)上增加a%,“紅富士蘋果”在原來售價(jià)基礎(chǔ)上提升a%,銷量比原來上升了30千克,其中兩種水果的進(jìn)價(jià)均不變,結(jié)果每天獲利比原來多300元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F.若BC=4,∠CBD=30°,則DF的長為____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)E是菱形ABCD邊BC上的中點(diǎn),∠ABC=30°,P是對(duì)角線BD上一點(diǎn),且PC+PE=.則菱形ABCD面積的最大值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com