【題目】如圖,E、F分別是AD和BC上的兩點,EF將四邊形ABCD分成兩個邊長為5cm的正方形,∠DEF=∠EFB=∠B=∠D=90°;點H是CD上一點且CH=lcm,點P從點H出發(fā),沿HD以lcm/s的速度運動,同時點Q從點A出發(fā),沿A→B→C以5cm/s的速度運動.任意一點先到達終點即停止運動;連結EP、EQ.
(1)如圖1,點Q在AB上運動,連結QF,當t= 時,QF//EP;
(2)如圖2,若QE⊥EP,求出t的值;
(3)試探究:當t為何值時,的面積等于面積的.
【答案】(1);(2);(3)t=0.5,,.
【解析】
(1)假設EP∥FQ,得到∠PEF=∠EFQ,由等角的余角相等,得∠QFB=∠DEP,通過正切關系,得到BQ與PD關系,求出t;
(2)通過△QEF≌△PED,得到FQ與PD間關系,進而求出t的值;
(3)分類討論:①當點Q在AB上時;②當點Q在BF上時,③當點Q在CF上時,分別求出t.
(1)由題意知:ED=FB=5cm,∠D=∠B=∠DEF=∠EFB=90°,
如圖,若EP∥FQ時,∠PEF=∠EFQ,
∴∠DEP=∠DEF-∠PEF=∠EFB-∠EFQ=∠QFB,
∴tan∠QFB= ,
所以BQ=DP,
∵BQ=5-5t,DP=DC-CH-PH=5-1-t=4-t,
∴5-5t=4-t,
∴t=,
故答案為:;
(2)如圖所示,若QE⊥EP,則∠QEP+∠FEP=90°,
又∵∠DEP+∠PEF=90°,
∴∠QEF=∠DEP,
在△QEF和△PED中,
,
∴△QEF≌△PED,
∴QF=DP,
∵FQ=10-5t,DP=4-t,
∴10-5t=4-t,
;
(3)①如圖所示,過Q做QM⊥EF,垂足為M,
由于四邊形ABFE是正方形,所以QM=AE=5cm,
當0<t≤1時,,,
當 ,
解得,t=0.5;
②當1<t≤2時,,,
,
,
解得: ;
③當2<t≤3時, ,
,
解得: ,
綜合上述:t=0.5,,.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC上一動點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內部,延長AF交CD于點G,AB=3,AD=4.
(1)如圖,當∠DAG=30° 時,求BE的長;
(2)如圖,當點E是BC的中點時,求線段GC的長;
(3)如圖,點E在運動過程中,當△CFE的周長最小時,直接寫出BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每年農歷五月初五,是中國民間的傳統(tǒng)節(jié)日——端午節(jié).它始于我國的春秋戰(zhàn)國時期,已列為世界非物質文化遺產.時至今日,端午節(jié)在我國仍是一個十分盛行的節(jié)日.今年端午節(jié),某地甲、乙兩家超市為吸引更多的顧客,開展促銷活動,對某種質量和售價相同的粽子分別推出了不同的優(yōu)惠方案.甲超市的方案是:購買該種粽子超過80元后,超出80元的部分按九折收費;乙超市的方案是:購買該種粽子超過120元后,超出120元的部分按八折收費.請根據顧客購買粽子的金額,選擇到哪家超市購買粽子劃算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC,BD=BC,∠ABC=900;
(1)畫出的高CE;;
(2)請寫出圖中的一對全等三角形(不添加任何字母),并說明理由;
(3)若,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成,硬紙板如圖兩種方法裁剪(裁剪后邊角料不再利用)
A方法:剪6個側面; B方法:剪4個側面和5個底面。
現有38張硬紙板,裁剪時x張用A方法,其余用B方法。
(1)用x的代數式分別表示裁剪出的側面和底面的個數;
(2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC中,分別延長邊AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面積為1,則△DEF的面積為( )
A. 12B. 14C. 16D. 18
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開設了豐富多彩的實踐類拓展課程,分別設置了體育類、藝術類、文學類及其它類課程(要求人人參與,每人只能選擇一門課程).為了解學生喜愛的拓展課類別,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)請將條形統(tǒng)計圖補充完整
(3)求文學類課程在扇形統(tǒng)計圖中所占圓心角的度數;
(4)若該校有1500名學生,請估計喜歡體育類拓展課的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,則CD等于( )
A. 3cmB. 4cmC. 5cmD. 6cm
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com