【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB=,AB=16.點(diǎn)E在射線BC上,點(diǎn)F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長(zhǎng);
(2)設(shè)BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)定義域;
(3)當(dāng)△DEF為等腰三角形時(shí),求線段BE的長(zhǎng).
【答案】(1)20;(2),定義域?yàn)?<x≤24;(3)20或24或.
【解析】
試題分析:(1)由矩形的性質(zhì)和三角函數(shù)定義求出AD,由勾股定理求出BD即可;
(2)證明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出結(jié)果;
(3)當(dāng)△DEF是等腰三角形時(shí),△BDE也是等腰三角形,分情況討論:
①當(dāng)BE=BD時(shí);②當(dāng)DE=DB時(shí);③當(dāng)EB=ED時(shí);分別求出BE即可.
試題解析:(1)∵四邊形ABCD是矩形,
∴∠A=90°,
在Rt△BAD中,,AB=16,
∴AD=12∴;
(2)∵AD∥BC,
∴∠ADB=∠DBC,
∵∠DEF=∠ADB,
∴∠DEF=∠DBC,
∵∠EDF=∠BDE,
∴△EDF∽△BDE,
∴,
∵BC=AD=12,BE=x,
∴CE=|x﹣12|,
∵CD=AB=16
∴在Rt△CDE中,,
∵,
∴,
∴,定義域?yàn)?<x≤24
(3)∵△EDF∽△BDE,
∴當(dāng)△DEF是等腰三角形時(shí),△BDE也是等腰三角形,
①當(dāng)BE=BD時(shí)
∵BD=20,∴BE=20
②當(dāng)DE=DB時(shí),
∵DC⊥BE,∴BC=CE=12,
∴BE=24;
③當(dāng)EB=ED時(shí),
作EH⊥BD于H,則BH=,cos∠HBE=cos∠ADB,
即
∴,
解得:BE=;
綜上所述,當(dāng)△DEF時(shí)等腰三角形時(shí),線段BE的長(zhǎng)為20或24或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校廣播站要招聘1名記者,小亮和小麗報(bào)名參加了3項(xiàng)素質(zhì)測(cè)試,成績(jī)?nèi)缦拢?/span>
寫(xiě)作能力 | 普通話水平 | 計(jì)算機(jī)水平 | |
小亮 | 90分 | 75分 | 51分 |
小麗 | 60分 | 84分 | 72分 |
將寫(xiě)作能力、普通話水平、計(jì)算機(jī)水平這三項(xiàng)的總分由原先按3:5:2計(jì)算,變成按5:3:2計(jì)算,總分變化情況是( )
A. 小麗增加多 B. 小亮增加多
C. 兩人成績(jī)不變化 D. 變化情況無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a,b,若a<b,則下列結(jié)論正確的是( )
A.a﹣3>b﹣3
B.﹣2+a>﹣2+b
C.
D.﹣2a>﹣2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a>b,則下列各式中正確的是( )
A.a﹣ <b﹣
B.﹣4a>﹣4b
C.﹣2a+1<﹣2b+1
D.a2>b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c過(guò)點(diǎn)B(3,0),C(0,3),D為拋物線的頂點(diǎn).
(1)求拋物線的解析式以及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C關(guān)于拋物線y=﹣x2+bx+c對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為E點(diǎn),聯(lián)結(jié)BC,BE,求∠CBE的正切值;
(3)點(diǎn)M是拋物線對(duì)稱(chēng)軸上一點(diǎn),且△DMB和△BCE相似,求點(diǎn)M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+5的圖象經(jīng)過(guò)點(diǎn)A(1,4).
(1)求這個(gè)一次函數(shù)的解析式.
(2)求出當(dāng)x=﹣1時(shí)的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第一工程隊(duì)承包甲工程,晴天需要12天完成,雨天工作效率下降40%,第二工程隊(duì)承包乙工程,晴天需要15天完成,雨天工作效率下降10%,實(shí)際上兩個(gè)工程隊(duì)同時(shí)開(kāi)工,同時(shí)完工、兩工程隊(duì)各工作了多少天,在施工期間有多少天在下雨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com