【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠C=30°,⊙O的半徑是6,若點P是⊙O上的一點,=,則PA的長為_____.
【答案】6
【解析】
連接OA、OB、OP,根據(jù)圓周角定理求得∠APB=∠C=30°,進而求得∠PAB=∠APB=30°,∠ABP=120°,根據(jù)垂徑定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等邊三角形,從而求得PB=OA=6,解直角三角形求得PD,即可求得PA.
解:連接OA、OB、OP,
∵∠C=30°,
∴∠APB=∠C=30°,
∵,
∴PB=AB,
∴∠PAB=∠APB=30°
∴∠ABP=120°,
∵PB=AB,
∴OB⊥AP,AD=PD,
∴∠OBP=∠OBA=60°,
∵OB=OA,
∴△AOB是等邊三角形,
∴AB=OA=6,
則Rt△PBD中,PD=cos30°PB=×6=3,
∴AP=2PD=6,
故答案為:6.
科目:初中數(shù)學 來源: 題型:
【題目】一輛貨車從A地開往B地,一輛小汽車從B地開往A地.同時出發(fā),都勻速行駛,各自到達終點后停止.設貨車、小汽車之間的距離為s(千米),貨車行駛的時間為t(小時),S與t之間的函數(shù)關(guān)系如圖所示.下列說法中正確的有( )
①A、B兩地相距60千米;
②出發(fā)1小時,貨車與小汽車相遇;
③小汽車的速度是貨車速度的2倍;
④出發(fā)1.5小時,小汽車比貨車多行駛了60千米.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點.當一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍是( 。
A. ﹣2<x<1 B. 0<x<1 C. x<﹣2和0<x<1 D. ﹣2<x<1和x>1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車1月份銷售總額為50000元,2月份銷售總額將比1月份減少20%,每輛銷售價比1月份降低400元,若這兩個月賣出的數(shù)量相同。
(1)求2月份A型車每輛售價多少元?
(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,求銷售這批車獲得的最大利潤是多少元?
A、B兩種型號車今年的進貨和銷售價格表:
A型車 | B型車 | |
進貨價格(元) | 1100 | 1400 |
銷售價格(元) | 2月份的銷售價格 | 2000 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABF中,以AB為直徑的作⊙O,∠BAF的平分線AD交⊙O于點D,AF與⊙O交于點E,過點B的切線交AF的延長線于點C
(1)求證:∠FBC=∠FAD;
(2)若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)y= -2x和反比例函數(shù)的圖象交于A(a,-4),B兩點。過原點O的另一條直線l與雙曲線交于點P,Q兩點(P點在第二象限),若以點A,B,P,Q為頂點的四邊形面積為24,則點P的坐標是_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等邊三角形,點D是射線BC上的一個動點(點D不與點B、C重合),△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,分別交射線AB、AC于點F、G,連接BE.
(1) 如圖1,當點D在線段BC上時:
①求證:△AEB≌△ADC;②求證:四邊形BCGE是平行四邊形;
(2)如圖2,當點D在BC的延長線上,且CD=BC時,試判斷四邊形BCGE是什么特殊的四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量山坡上一棵樹PQ的高度,小明在點A處利用測角儀測得樹頂P的仰角為450 ,然后他沿著正對樹PQ的方向前進10m到達B點處,此時測得樹頂P和樹底Q的仰角分別是600和300,設PQ垂直于AB,且垂足為C.
(1)求∠BPQ的度數(shù);
(2)求樹PQ的高度(結(jié)果精確到0.1m, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com