【題目】如圖,中,,,為中點,,給出四個結(jié)論:①;②;③;④,其中成立的有( )
A.4個B.3個C.2個D.1個
【答案】A
【解析】
根據(jù)等腰直角三角形的性質(zhì),得∠B=45°,∠BAP=45°,即可判斷①;由∠BAP=∠C=45°,AP=CP,∠EPA=∠FPC,得EPAFPC,即可判斷②;根據(jù)EPAFPC,即可判斷③;由,即可判斷④.
∵中,,,為中點,
∴∠B=45°,∠BAP=∠BAC=×90°=45°,即:,
∴①成立;
∵,, 為中點,
∴∠BAP=∠C=45°,AP=CP=BC,AP⊥BC,
又∵,
∴∠EPA+∠APF=∠FPC+∠APF=90°,
∴∠EPA=∠FPC,
∴EPAFPC(ASA),
∴,
②成立;
∵EPAFPC,
∴
∴③成立,
∵EPAFPC,
∴,
∴④成立.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知是等邊三角形,點的坐標是,點在第一象限,的平分線交軸于點,把繞著點按逆時針方向旋轉(zhuǎn),使邊與重合,得到,連接.求:的長及點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=78°,∠B=82°,則∠C=_________,∠D=__________
(2)在探究“等對角四邊形”性質(zhì)時:
①小紅畫了一個“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立.請你證明此結(jié)論;
②由此小紅猜想:“對于任意‘等對角四邊形’,當一組鄰邊相等時,另一組鄰邊也相等”.你認為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例(提示:舉反例可畫圖并說明)
(3)已知:在“等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=,AD=,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D作⊙O的切線交BC于點E,連接OE
(1)證明OE∥AD;
(2)①當∠BAC= °時,四邊形ODEB是正方形.
②當∠BAC= °時,AD=3DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,經(jīng)過點C的⊙O與斜邊AB相切于點P.
(1)如圖①,當點O在AC上時,試說明2∠ACP=∠B;
(2)如圖②,AC=8,BC=6,當點O在△ABC外部時,求CP長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸的交點分別為A、B,與y軸的負半軸交于點C.已知拋物線的頂點坐標為(1,﹣4),點B的坐標(3,0).
(1)求該拋物線的解析式.
(2)在該函數(shù)圖象上能否找到一點P,使PO=PC?若能,請求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.
(1)求證:△AEH≌△CGF;
(2)在點E、F、G、H運動過程中,判斷直線EG是否經(jīng)過某一個定點,如果是,請證明你的結(jié)論;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com