【題目】在△ABC中,∠ACB=90°,經(jīng)過(guò)點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P.
(1)如圖①,當(dāng)點(diǎn)O在AC上時(shí),試說(shuō)明2∠ACP=∠B;
(2)如圖②,AC=8,BC=6,當(dāng)點(diǎn)O在△ABC外部時(shí),求CP長(zhǎng)的取值范圍.
【答案】(1)2∠ACP=∠B;(2)當(dāng)點(diǎn)O在△ABC外時(shí),<CP≤8.
【解析】分析:(1)根據(jù)BC與AC垂直得到BC與圓相切,再由AB與相切于點(diǎn)P,利用切線長(zhǎng)定理得到,利用等邊對(duì)等角得到一對(duì)角相等,再由等量代換即可得證;
(2)在中,利用勾股定理求出AB的長(zhǎng),根據(jù)AC與BC垂直,得到BC與相切,連接連接OP、AO,再由AB與相切,得到OP垂直于AB,設(shè)OC=x,則OP=x,OB=BCOC=6x,求出PA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出BO的長(zhǎng),根據(jù)AC=AP,OC=OP,得到AO垂直平分CP,根據(jù)面積法求出CP的長(zhǎng),由題意可知,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),CP最長(zhǎng),即可確定出CP的范圍.
詳解:(1)當(dāng)點(diǎn)O在AC上時(shí),OC為的半徑,
∵BC⊥OC,且點(diǎn)C在上,
∴BC與相切,
∵與AB邊相切于點(diǎn)P,
∴BC=BP,
∴
∵
∴
即2∠ACP=∠B;
(2)在△ABC中,
如圖,當(dāng)點(diǎn)O在CB上時(shí),OC為的半徑,
∵AC⊥OC,且點(diǎn)C在上,
∴AC與相切,
連接OP、AO,
∵與AB邊相切于點(diǎn)P,
∴OP⊥AB,
設(shè)OC=x,則OP=x,OB=BCOC=6x,
∵AC=AP,
∴BP=ABAP=108=2,
在△OPA中,
根據(jù)勾股定理得:,即
解得:
在△ACO中,
∴
∵AC=AP,OC=OP,
∴AO垂直平分CP,
∴根據(jù)面積法得: 則符合條件的CP長(zhǎng)大于
由題意可知,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),CP最長(zhǎng),
綜上,當(dāng)點(diǎn)O在△ABC外時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是等邊三角形,點(diǎn)的坐標(biāo)是,點(diǎn)在第一象限,的平分線交軸于點(diǎn),把繞著點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),使邊與重合,得到,連接.求:的長(zhǎng)及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(3)當(dāng)△ADE是等腰三角形時(shí),求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖①由4根火柴棍圍成;圖②由12根火柴棍圍成;圖③由24根火柴棍圍成;…按此規(guī)律,則第⑥個(gè)圖形由( )根火柴棍圍成.
A. 60 B. 72 C. 84 D. 112
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)是上一點(diǎn),且平分,點(diǎn)是上一點(diǎn),以為直徑的經(jīng)過(guò)點(diǎn).
求證:是的切線;
若的面積的面積,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=78°,∠B=82°,則∠C=_________,∠D=__________
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
①小紅畫了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;
②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例(提示:舉反例可畫圖并說(shuō)明)
(3)已知:在“等對(duì)角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=,AD=,求對(duì)角線AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸的交點(diǎn)分別為A、B,與y軸的負(fù)半軸交于點(diǎn)C.已知拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4),點(diǎn)B的坐標(biāo)(3,0).
(1)求該拋物線的解析式.
(2)在該函數(shù)圖象上能否找到一點(diǎn)P,使PO=PC?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com