【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連結(jié)BM,MN.
(1)求證BM=MN;
(2)若∠BCN=135°,求∠BMN的度數(shù).
【答案】(1)見解析;(2)90°
【解析】
(1)根據(jù)直角三角形斜邊中線性質(zhì)得出BM=AC,再根據(jù)中位線定理得出MN=AD,結(jié)合AC=AD即可得出結(jié)論;
(2)根據(jù)題意得出BM=CM=MN,從而得出∠MBC=∠BCM,∠MCN=∠MNC,結(jié)合∠BCN=135°,根據(jù)三角形內(nèi)角和以及∠BMN=∠BMC+∠CMN得出∠BMN的度數(shù).
解:(1)證明:∵∠ABC=90°,M為AC中點(diǎn),
∴BM=AC,
∵N是CD中點(diǎn),
∴MN=AD,
∵AC=AD,
∴BM=MN;
(2)∵點(diǎn)M是AC中點(diǎn),
∴BM=AM=CM=MN,
∴∠MBC=∠BCM,∠MCN=∠MNC,
∵∠BCN=∠BCM+∠MCN=135°,
∴∠BMN=∠BMC+∠CMN
=180°-(∠BCM+∠MBC)+180°-(∠MCN+∠MNC)
=360°-2(∠BCM+∠MCN)
=360°-270°=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,半徑為2的⊙P的圓心P的坐標(biāo)為(-3,0),將⊙P沿x軸正方向平移,使⊙P與y軸相切,則平移的距離為( )
A.1
B.1或5
C.3
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沙沙騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校. 以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)沙沙家到學(xué)校的路程是多少米?
(2)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段沙沙騎車速度最快,最快的速度是多少米/分?
(3)沙沙在書店停留了多少分鐘?
(4)本次上學(xué)途中,沙沙一共行駛了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是AB的中點(diǎn),E是CD的中點(diǎn),過點(diǎn)C作CF∥AB交AE的延長(zhǎng)線于點(diǎn)F,連結(jié)BF.
(1)求證:四邊形BDCF是平行四邊形;
(2)當(dāng)AC=BC時(shí),判斷四邊形BDCF是哪種特殊的平行四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(0,8),點(diǎn)B(m,0),且m>0.把△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得△ACD,點(diǎn)O,B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為C,D,
(1)點(diǎn)C的坐標(biāo)為 ;
(2)①設(shè)△BCD的面積為S,用含m的式子表示S,并寫出m的取值范圍;
②當(dāng)S=6時(shí),求點(diǎn)B的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程ax-(3a+1)x+2(a+1)=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2,且x1-x1x2+x2=1-a,則a=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測(cè)量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測(cè)得雕像頂端A的仰角為60°,求雕像AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn) E 在正方形 ABCD 的 AB 邊上(不與點(diǎn) A,B 重合),BD 是對(duì)角線,延長(zhǎng) AB 到點(diǎn) F,使 BF=AE,過點(diǎn) E 作 BD 的垂線,垂足為 M,連接 AM,CF.
(1)求證:MB=ME;
(2)①用等式表示線段 AM 與 CF 的數(shù)量關(guān)系,并證明;
②用等式表示線段 AM,BM,DM 之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com