【題目】如圖在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A、D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
【答案】
(1)證明:連接OD,在△AOD中,OA=OD,
∴∠A=∠ODA,
又∵∠A+∠CDB=90°
∴∠ODA+∠CDB=90°,
∴∠BDO=180°-90°=90°,即OD⊥BD,
∴BD與⊙O相切.
(2)解:連接DE,∵AE是⊙O的直徑,
∴∠ADE=90°,
∴DE∥BC.
又∵D是AC的中點,
∴AE=BE.
∴△AED∽△ABC.
∴AC∶AB=AD∶AE.
∵AD:AE=4:5
∴AC∶AB=4∶5,
令A(yù)C=4x,AB=5x,則BC=3x.
∵BC=6,
∴AB=10,
∴AE=5,
∴⊙O的直徑為5.
【解析】 (1)連接OD,根據(jù)同圓的半徑相等得出OA=OD, 根據(jù)等邊對等角得出∠A=∠ODA,根據(jù)等量代換及平角的定義得出∠BDO=90°,從而得出BD與⊙O相切;
(2)(1)連接DE,根據(jù)直徑所對的圓周角是直角得出∠ADE=90°,根據(jù)同位角相等兩直線平行得出DE∥BC.根據(jù)三角形中位線的判定知AE=BE,從而判斷出△AED∽△ABC,根據(jù)相似三角形對應(yīng)邊成比例得出AC∶AB=AD∶AE,從而找到AC,AB的關(guān)系,從而得出該圓的直徑。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某童裝店有A、B兩種型號的童裝,其進價與售價如下表所示:
型號 | 進價(元) | 售價(元) |
A型 | 90 | 108 |
B型 | 100 | 130 |
根據(jù)市場需要,服裝店決定:購進A種服裝的數(shù)量要比購進B種服裝的2倍還多4件,且A種服裝購進數(shù)量不超過28件,并使這批服裝全部銷售完畢后的總利潤不少于699元.若假設(shè)購進B種服裝x件,那么:
(1)請寫出A、B兩種服裝全部銷售完畢后的總利潤y/元用含x/件的式子表示;
(2)請問該服裝店有幾種滿足條件的進貨方案?哪種方案獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號min{a,b}的含義為:當a≥b時,min{a,b}=b;當a<b時,min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.
(1)求min{x2﹣1,﹣2};
(2)已知min{x2﹣2x+k,﹣3}=﹣3,求實數(shù)k的取值范圍;
(3)已知當﹣2≤x≤3時,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15.直接寫出實數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段和線段,點均在小正方形的頂點上.
(1)在方格紙中畫出以為斜邊的直角三角形,點E在小正方形的頂點上,且的面積為5;
(2)在方格紙中畫出以為一邊的,點在小正方形的頂點上,的面積為4,射線與射線交于點,且,連接,請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,M、N是△ABC的BC邊上兩點,且AB=AC,BM=CN
(1)如圖1,證明:△ABN≌△ACM;
(2)如圖2,當∠ANB=2∠B時,直接寫出圖中所有等腰三角形(△ABC除外)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標平面內(nèi),直線y=-x+5與 軸和 軸分別交于A、B兩點,二次函數(shù)y= +bx+c的圖象經(jīng)過點A、B,且頂點為C.
(1)求這個二次函數(shù)的解析式;
(2)求sin∠OCA的值;
(3)若P是這個二次函數(shù)圖象上位于x軸下方的一點,且 ABP的面積為10,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知△ABC三個頂點的坐標分別為A(-2,0),B(-4,4),C(3,-3).
(1)畫出△ABC;
(2)畫出△ABC向右平移3個單位長度,再向上平移4個單位長度后得到的△A1B1C1;
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】讀題畫圖計算并作答
畫線段AB=3 cm,在線段AB上取一點K,使AK=BK,在線段AB的延長線上取一點C,使AC=3BC,在線段BA的延長線取一點D,使AD=AB.
(1)求線段BC、DC的長?
(2)點K是哪些線段的中點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com