如圖:已知P為⊙O直徑AB上任意一點(diǎn),弦CD過P且與AB交成45°角.求證:PC2+PD2為定值.

證明:當(dāng)點(diǎn)p與O點(diǎn)重合時(shí),
PC2+PD2=2圓O的半徑的平方
當(dāng)點(diǎn)P為一般情況時(shí),
作CM⊥AB于M,DN⊥AB于N,連接OC和OD,
可知∠NDP=∠MCP=45°
又OC=OD,則∠ODP=∠OCP
∴∠NDO=∠COM
∴Rt△ODN≌Rt△COM
∴ON=CM=PM,OM=ND=PN
又∵OC2=CM2+OM2,OD2=DN2+ON2
∴OC2=CM2+PN2,OD2=DN2+PM2
∴OC2+OD2=CM2+PN2+DN2+PM2=PC2+PD2,
因此PC2+PD2=2圓O的半徑的平方(為定值).
分析:分類討論(1)P點(diǎn)與O點(diǎn)重合,(2)P為一般情況,求證Rt△ODN≌Rt△COM,得ON=CM=PM,OM=ND=PN,從而求證OC2+OD2=PC2+PD2為定值.
點(diǎn)評(píng):本題考查了在圓中構(gòu)建三角形運(yùn)用勾股定理解直角三角形,本題中求證PC2+PD2=2OC2是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時(shí)以每秒1個(gè)單位的速度沿水平方向分別向右、向左運(yùn)動(dòng);與此同時(shí),點(diǎn)M,點(diǎn)N同時(shí)以每秒2個(gè)單位的速度沿堅(jiān)直方向分別向下、向上運(yùn)動(dòng),直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動(dòng)時(shí)間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動(dòng)過程中,四邊形MDNA能否形成矩形?若能,求出此時(shí)t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長(zhǎng)為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
1
2
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請(qǐng)直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是2,如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則正方形邊長(zhǎng)的值為
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案