如圖,已知○為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標為(2,0).
(1)求點B的坐標;
(2)若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;
(3)在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由.
解:(1)在Rt△OAB中,∵∠AOB=30°,∴OB=. 過點B作BD垂直于x軸,垂足為D,則OD=,BD=,∴點B的坐標為(,). 3分 (2)將A(2,0)、B(,)、O(0,0)三點的坐標代入y=ax2+bx+c,得 1分 解有a=,b=,c=0. ∴所求二次函數(shù)解析式是y=x2+x. 2分 (3)設存在點C(x,x2+x)(其中0<x<),使四邊形ABCO面積最大. ∵△OAB面積為定值, ∴只要△OBC面積最大,四邊形ABCO面積就最大. 1分 過點C作x軸的垂線CE,垂足為E,交OB于點F,則 S△OBC=S△OCF +S△BCF==, 而|CF|=yC-yF=, ∴S△OBC=. 3分 ∴當x=時,△OBC面積最大,最大面積為. 1分 此時,點C坐標為(),四邊形ABCO的面積為. 1分 |
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com