解答:解:(1)∵拋物線(xiàn)頂點(diǎn)坐標(biāo)為(1,2),
∴設(shè)拋物線(xiàn)解析式為y=a(x-1)
2+2,
又∵拋物線(xiàn)經(jīng)過(guò)原點(diǎn),
∴a(0-1)
2+2=0,
解得a=-2,
∴拋物線(xiàn)的解析式為y=-2(x-1)
2+2;
(2)拋物線(xiàn)向右平移m個(gè)單位,則頂點(diǎn)坐標(biāo)為(1+m,2),
∴平移后的拋物線(xiàn)解析式為y=-2(x-1-m)
2+2,
與原拋物線(xiàn)解析式聯(lián)立得,
| y=-2(x-1)2+2 | y=-2(x-1-m)2+2 |
| |
,
解得
,
又∵原拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(1,2),
∴點(diǎn)A、O關(guān)于直線(xiàn)x=1對(duì)稱(chēng),
∴點(diǎn)A的坐標(biāo)為(2,0),
∴AO=2,
∴CD=AO=2,
①0<m<2時(shí),點(diǎn)P在第一象限,
S=
×2×(-
m
2+2)=-
m
2+2,
②m>2時(shí),點(diǎn)P在第四象限,
S=
×2×[-(-
m
2+2)]=
m
2-2;
綜上所述,S關(guān)于m的關(guān)系式為S=
;
(3)根據(jù)(2),當(dāng)m=2時(shí),平移后的拋物線(xiàn)解析式為y=-2(x-1-2)
2+2=-2(x-3)
2+2=-2x
2+12x-16,
假設(shè)存在⊙Q,使得⊙Q與兩坐標(biāo)軸都相切,設(shè)點(diǎn)Q的坐標(biāo)為(x,-2x
2+12x-16),
則x=|-2x
2+12x-16|,
∴x=-2x
2+12x-16①或x=-(-2x
2+12x-16)②,
整理①得,2x
2-11x+16=0,
△=11
2-4×2×16=121-128=-7<0,
方程無(wú)解,
整理②得,2x
2-13x+16=0,
解得x=
=
=
,
∴當(dāng)x=
時(shí),y=
,
當(dāng)x=
時(shí),y=
,
∴點(diǎn)Q的坐標(biāo)為(
,
)或(
,
).